Description
在遥远的东方,有一个神秘的民族,自称Y族。他们世代居住在水面上,奉龙王为神。每逢重大庆典, Y族都
会在水面上举办盛大的祭祀活动。我们可以把Y族居住地水系看成一个由岔口和河道组成的网络。每条河道连接着
两个岔口,并且水在河道内按照一个固定的方向流动。显然,水系中不会有环流(下图描述一个环流的例子)。
由于人数众多的原因,Y族的祭祀活动会在多个岔口上同时举行。出于对龙王的尊重,这些祭祀地点的选择必
须非常慎重。准确地说,Y族人认为,如果水流可以从一个祭祀点流到另外一个祭祀点,那么祭祀就会失去它神圣
的意义。族长希望在保持祭祀神圣性的基础上,选择尽可能多的祭祀的地点。
Input
第一行包含两个用空格隔开的整数N、M,分别表示岔口和河道的数目,岔口从1到N编号。接下来M行,每行包
含两个用空格隔开的整数u、v,描述一条连接岔口u和岔口v的河道,水流方向为自u向v。 N ≤ 100 M ≤ 1 000
Output
第一行包含一个整数K,表示最多能选取的祭祀点的个数。
Sample Input
4 4
1 2
3 4
3 2
4 2
1 2
3 4
3 2
4 2
Sample Output
2
【样例说明】
在样例给出的水系中,不存在一种方法能够选择三个或者三个以上的祭祀点。包含两个祭祀点的测试点的方案有两种:
选择岔口1与岔口3(如样例输出第二行),选择岔口1与岔口4。
水流可以从任意岔口流至岔口2。如果在岔口2建立祭祀点,那么任意其他岔口都不能建立祭祀点
但是在最优的一种祭祀点的选取方案中我们可以建立两个祭祀点,所以岔口2不能建立祭祀点。对于其他岔口
至少存在一个最优方案选择该岔口为祭祀点,所以输出为1011。
【样例说明】
在样例给出的水系中,不存在一种方法能够选择三个或者三个以上的祭祀点。包含两个祭祀点的测试点的方案有两种:
选择岔口1与岔口3(如样例输出第二行),选择岔口1与岔口4。
水流可以从任意岔口流至岔口2。如果在岔口2建立祭祀点,那么任意其他岔口都不能建立祭祀点
但是在最优的一种祭祀点的选取方案中我们可以建立两个祭祀点,所以岔口2不能建立祭祀点。对于其他岔口
至少存在一个最优方案选择该岔口为祭祀点,所以输出为1011。
HINT
Source
题意就是能够联通的两个点(能从一个到另一个)是不能同时取的。
注意一开始给出的边都是有向边。
那么首先可以跑一边floyd求出连通性。
然后要求的就是二分图的极大点独立集。
可以把这个二分图看做左边一列1~n,右边一列1~n,
然后如果u->v=1,那么从左边的u向右边的v连一条边。
如何求这个二分图的极大点独立集?
二分图极大点独立集=总点数-二分图的最大匹配。
那么再跑一遍匈牙利就ok了。
还是优化了一下标记(感觉可能会快一点)
#include<bits/stdc++.h>
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while (ch<'0' || ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int
N=105;
int n,m,tag;
int vis[N],match[N];
int mp[N][N];
bool dfs(int u){
int t;
for (int i=1;i<=n;i++)
if (vis[i]!=tag && mp[u][i]){
vis[i]=tag;
t=match[i];
match[i]=u;
if (!t || dfs(t)) return 1;
match[i]=t;
}
return 0;
}
int main(){
n=read(),m=read();
int u,v;
for (int i=1;i<=m;i++){
u=read(),v=read();
mp[u][v]=1;
}
for (int k=1;k<=n;k++)
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
mp[i][j]=mp[i][j]|(mp[i][k]&mp[k][j]);
tag=0; int ans=0;
for (int i=1;i<=n;i++){
tag++;
if (dfs(i)) ans++;
}
printf("%d\n",n-ans);
return 0;
}