模板整理:数论---组合数/欧几里得/孙子定理/费马小定理/欧拉定理及相关

对于组合数C(n,m),意为在n个球中任取m个的方案数,
当n < m时C(n,m)=0,
当n>=m时,

C(n,m)=n!m!(nm)!

组合数的递推式,通常用的一种:
C(n,m)=C(n1,m1)+C(n1,m)

讨论第n个球取不取即可得出递推式。

通常计算组合数C(n,m)%P,有以下几种方法,
可以根据数据特性和范围来选择:
1.n,m/
2.Pm!(nm)!
P
3.PPLucas
Lucas(P)C(n,m)=C(n%P,m%P)C(n/P,m/P)

n<Pm<PP
log
4.PLucas
P=pa11pa22pakkpipi
LucasC(n,m)%paii=ansipaii


wn=xi(mod  pi)piM=p1p2pwmi=M/pimipiaixiaimi    (%M)

C(n,m)%paiipi
%paii
%paii19!%32
19!=12345678910111213141516171819
=(124578)36(124578)19
(%32)
pcii
19pcii
36npi
pi
ci=1Lucaslucas
bzoj2142,扩展Lucas的模板题

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int 
    MAX=100000;
ll n,mod;
int pcnt,len;
ll prime[6000],p[10000],pk[10000],c[10000];
bool notprime[MAX];
void Get_Prime(){
    notprime[1]=1,pcnt=0;
    for (int i=2;i<=MAX;i++){
        if (!notprime[i]) prime[++pcnt]=i;
        for (int j=1;j<=pcnt;j++){
            if (prime[j]*i>MAX) break;
            notprime[prime[j]*i]=1;
            if (!(i%prime[j])) break;
        }
    }
}
void FenJie(ll x){
    len=0;int j=1;
    while (x!=1){
        if (x%prime[j]==0){
            p[++len]=prime[j],c[len]=0;
            pk[len]=1;
            while (x%prime[j]==0)
                c[len]++,x/=prime[j],pk[len]*=prime[j];
        }
        j++;
    }
}
ll ksm(ll x,ll y,ll mod){
    ll z=1LL;
    while (y){
        if (y&1LL) z=z*x%mod;
        y>>=1LL;
        x=x*x%mod;
    }
    return z;
}
ll exgcd(ll a,ll b,ll &x,ll &y){
    if (!b){
        x=1LL,y=0LL;
        return a;
    }
    ll tt=exgcd(b,a%b,x,y),tmp=x;
    x=y,y=tmp-a/b*y;
    return tt;
}
ll inv(ll a,ll b){
    ll t1,t2;
    exgcd(a,b,t1,t2);
    t1=(t1+b)%b;
    return t1;
}
ll Fac(ll n,ll pi,ll pk){
    if (!n) return 1LL;
    ll t=1LL;
    if (n/pk){
        for (ll i=2;i<=pk;i++)
            if (i%pi) t=t*i%pk;
        t=ksm(t,n/pk,pk);
    }
    for (ll i=2;i<=n%pk;i++)
        if (i%pi) t=t*i%pk;
    return t*Fac(n/pi,pi,pk)%pk;
}
ll Lucas(ll n,ll m,ll pi,ll pk){
    if (n<m) return 0LL;
    ll x=Fac(n,pi,pk),y=Fac(m,pi,pk),z=Fac(n-m,pi,pk);
    ll t=0LL;
    for (ll a=n;a;a/=pi) t+=a/pi;
    for (ll a=m;a;a/=pi) t-=a/pi;
    for (ll a=n-m;a;a/=pi) t-=a/pi;
    return x*ksm(pi,t,pk)%pk*inv(y,pk)%pk*inv(z,pk)%pk;
}
ll C(ll n,ll m){
    ll t=0LL,t1;
    for (int i=1;i<=len;i++){
        t1=Lucas(n,m,p[i],pk[i]);
        t1=t1*(mod/pk[i])%mod*inv(mod/pk[i],pk[i])%mod;
        t=(t+t1)%mod;
    }
    return t;
}
int main(){
    Get_Prime();
    scanf("%lld",&mod);
    FenJie(mod);int m;
    scanf("%lld%d",&n,&m);

    ll x,ans=1LL;
    while (m--){
        scanf("%lld",&x);
        ans=(ans*C(n,x))%mod;
        n-=x;
        if (n<0) return puts("Impossible"),0;
    }
    printf("%lld\n",ans);
    return 0;
}


那么组合数的各种问题就大致解决了,有2个小tricks值得记记:
1.n!x=nx+nx2+nx3
2.nC(2n,n)n+1 或者 C(2n,n)C(2n,n1)

接下来是欧几里得:gcd(a,b)=gcd(b,a%b),
也就是“辗转相除法”
当a,b很大比如高精度,可以用“更相减损术”,
即如果都能/2就/2,不然辗转相除。

exgcd(a,b,x,y)abexgcd(a,b,x,y)xyabxax=1(%b)ax+by=cw=gcd(a,b)c%w0abcwabax=1(%b)xxcxxbya

扩欧用处多多啊!得会得会。。

//用了long long
ll exgcd(ll a,ll b,ll &x,ll &y){
    if (!b){
        x=1LL,y=0LL;
        return a;
    }
    ll tt=exgcd(b,a%b,x,y),tmp=x;
    x=y,y=tmp-a/b*y;
    return tt;
}


pap1=1   (mod p)gcd(a,p)=1aϕ(p)=1  (mod p)gcd(a,p)1b>ϕ(p)ab=ab%phi(p)+phi(p)   (mod p)pphi(p)log(p)xaxalog(p)x=ax

扩展欧拉定理一个应用是bzoj4869
……应该不会考什么这种题了。。。

数论可能真没什么题了……快速幂啥的虚无。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值