马尔科夫链,是数学中具有马尔科夫性质的离散事件随机过程。该过程中,在给定当前知识和信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的;
一、马尔科夫性质-原理简洁
X1,X2,X3…马尔科夫链:描述了一个状态序列,其每个状态值取决于前面有限个状态。马尔科夫链是具有马尔科夫性质的随机变量的一个数列。这些变量的变化范围,即它们所有可能取值的集合,被称为“状态空间”,而Xn的值表示在时间n的状态。如果Xn+1对于过去状态的条件概率分布仅是Xn的一个函数,则:
P(Xn+1=x|X1=x1,X2=x2,...,Xn=xn)=P(Xn+1=x|Xn=xn)
这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。
二、理论延伸
蒙特卡洛方法:
隐马尔科夫模型:
三、定义
马尔可夫性:设{X(t),t∈T}是一个随机过程,如果{X(t),t∈T}在t0时刻所处的状态为已知时,与它在时刻 t0 之前所处的状态无关,则称具有马尔可夫性
马尔科夫过程:设{X(t),t∈T}的状态空间为S,如果对于任意的n≧2,任意的t1