AWQ和GPTQ量化的区别

一、前言

本地化部署deepseek时发现,如果是量化版的deepseek,会节约很多的内容,然后一般有两种量化技术,那么这两种量化技术有什么区别呢?

二、量化技术对比

在模型量化领域,AWQGPTQ 是两种不同的量化技术,用于压缩和加速大型语言模型(如 deepseek-r1-distill-qwen)。以下是它们的详细说明:


1. AWQ(Activation-aware Weight Quantization

  • 定义

AWQ 是一种激活感知的权重量化技术,它通过分析模型激活值的分布来优化量化过程,从而减少量化带来的精度损失。

  • 核心思想

    • 在量化过程中,AWQ 不仅考虑模型权重,还考虑激活值(即模型中间层的输出)。

    • 通过识别对模型输出影响较大的权重,AWQ 会为这些权重分配更高的精度,而对影响较小的权重则使用更低的精度。

  • 优点

    • 相比传统的权重量化方法,AWQ 能够更好地保持模型性能。

    • 特别适合大规模语言模型,能够在压缩模型的同时减少精度损失。

  • 适用场景

    • 需要高压缩率(如 4-bit 量化)但又不希望显著降低模型性能的任务。


2. GPTQ(Generalized Post-Training Quantization

  • 定义

GPTQ 是一种后训练量化技术,专门为大规模语言模型设计。它通过对模型权重进行逐层优化,实现高效的量化。

  • 核心思想

    • GPTQ 在模型训练完成后,对每一层的权重进行量化。

    • 它使用一种近似二阶优化方法(如 Hessian 矩阵)来最小化量化误差,从而在低精度下保持模型性能。

  • 优点

    • 支持极低精度的量化(如 3-bit 或 4-bit),同时保持较高的模型性能。

    • 计算效率高,适合在实际部署中使用。

  • 适用场景

    • 需要极低精度量化(如 4-bit)的任务,尤其是资源受限的环境(如移动设备或嵌入式设备)。


3. AWQ 和 GPTQ 的区别

特性

AWQ

GPTQ

量化目标

权重 + 激活值

权重

优化方法

激活感知,动态调整量化精度

基于二阶优化(Hessian 矩阵)

精度损失

较低,适合高压缩率

较低,适合极低精度量化

计算复杂度

较高,需要分析激活值分布

较低,逐层优化

适用场景

高压缩率(如 4-bit),性能敏感任务

极低精度(如 3-bit 或 4-bit),资源受限环境

三、总结

量化技术确实是一种优化模型的有效方法,能够显著降低显存需求和计算成本。然而,在DeepSeek系列模型上应用量化技术时,虽然可以节约大量内存,但可能会导致模型性能下降,尤其是在低精度(如INT8或INT4)下,效果可能会大打折扣。因此:

1. 如果用于学习或实验,量化版模型是一个不错的选择,因为它可以在资源有限的环境中运行,帮助用户快速验证想法或进行初步测试。
2. 如果对效果有较高要求,或用于商用场景,建议优先使用未量化的原版模型,即使选择较小规模的模型(如DeepSeek-R1-7B或DeepSeek-R1-14B),也能在性能和资源消耗之间取得更好的平衡。

总之,量化技术适合资源受限的场景或实验性用途,但在追求高精度或商业部署时,建议谨慎使用量化版模型,优先考虑模型性能。


### LLaMA-Factory 模型量化方法 对于希望减少模型大小并提高推理速度而不显著损失性能的应用场景,可以采用后训练量化(Post Training Quantization, PTQ)技术来处理 LLaMA-Factory 中的大规模语言模型。支持的量化方案包括但不限于 GPTQ AWQ (Activation-aware Weight Quantization)[^2]。 #### 使用AWQ进行量化 当选择使用激活感知权重量化(AWQ)时,需提供待量化的预训练模型名或其存储路径作为参数输入给脚本。例如,在配置文件中设置 `model_name_or_path` 参数指向已有的量化版本模型位置,像这样: ```yaml model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-AWQ ``` 此操作会加载特定于 AWQ 的优化过的 Meta-Llama 版本[^3]。 #### 实施GPTQ量化过程 另一种常见的做法是利用 GPTQ 方法来进行量化工作。这通常涉及到调整原有的训练流程以适应新的约束条件,并可能涉及修改源码中的某些部分以便更好地集成量化逻辑。具体实现细节取决于项目需求以及所使用的框架特性[^4]。 ```python from llmfactory.quantize.gptq import apply_gptq_quantization apply_gptq_quantization(model=model, bits=4) ``` 上述代码片段展示了如何通过调用自定义函数 `apply_gptq_quantization()` 来应用四比特精度级别的 GPTQ 量化到目标模型实例上。 #### 执行量化命令 一旦选择了合适的量化策略并将必要的更改应用于代码库之后,则可以通过 CLI 工具执行实际的量化任务。假设已经准备好了一个名为 `train_lora.yaml` 的 YAML 配置文件用于指导整个过程,那么就可以运行如下指令启动量化进程: ```bash llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml ``` 这条命令将会依据所提供的配置项完成对指定模型架构实施选定类型的量化转换[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas_Cai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值