Datawhale 计算机视觉基础-图像处理(上)-Task02 几何变换
2.1 简介
该部分将对基本的几何变换进行学习,几何变换的原理大多都是相似,只是变换矩阵不同,因此,我们以最常用的平移和旋转为例进行学习。在深度学习领域,我们常用平移、旋转、镜像等操作进行数据增广;在传统CV领域,由于某些拍摄角度的问题,我们需要对图像进行矫正处理,而几何变换正是这个处理过程的基础,因此了解和学习几何变换也是有必要的。
这次我们带着几个问题进行,以旋转为例:
1:变换的形式(公式)是什么?
2:旋转中心是什么?毕竟以不同位置为旋转中心得到的结果是不一样的。
3:采用前向映射还是反向映射?(反向映射更为有效)
4:采用反向映射后,采用何种插值算法?最常用的的是双线性插值,OpenCV也是默认如此。
2.2 学习目标
了解几何变换的概念与应用
理解平移、旋转的原理
掌握在OpenCV框架下实现平移、旋转操作
2.3 内容介绍
1、平移、旋转的原理
2、OpenCV代码实践
3、动手实践并打卡(读者完成)
2.4 算法理论介绍
变换形式
2.5 基于OpenCV的实现
工具:OpenCV3.1.0+VS2013
平台:WIN10
函数原型(c++)
OpenCV仿射变换相关的函数一般涉及到warpAffine和getRotationMatrix2D这两个:
使用OpenCV函数warpAffine 来实现一些简单的重映射.
OpenCV函数getRotationMatrix2D 来获得旋转矩阵。