损失函数与评价函数

本文介绍了语义分割中常用的评价指标和损失函数,如Dice、IoU、BCE、Focal Loss和Lovász-Softmax。首先讲解了TP、TN、FP、FN的基本概念,它们是评估分类问题精度和召回率的基础。在语义分割任务中,这些概念同样适用,每个像素被看作一个分类问题,进而计算混淆矩阵。
摘要由CSDN通过智能技术生成

4.1 学习目标
掌握常见的评价函数和损失函数Dice、IoU、BCE、Focal Loss、Lovász-Softmax;
掌握评价/损失函数的实践;
4.2 TP TN FP FN
在讲解语义分割中常用的评价函数和损失函数之前,先补充一**TP(真正例 true positive) TN(真反例 true negative) FP(假正例 false positive) FN(假反例 false negative)**的知识。在分类问题中,我们经常看到上述的表述方式,以二分类为例,我们可以将所有的样本预测结果分成TP、TN、 FP、FN四类,并且每一类含有的样本数量之和为总样本数量,即TP+FP+FN+TN=总样本数量。
上述的概念都是通过以预测结果的视角定义的,可以依据下面方式理解:

预测结果中的正例 → 在实际中是正例 → 的所有样本被称为真正例(TP)<预测正确>

预测结果中的正例 → 在实际中是反例 → 的所有样本被称为假正例(FP)<预测错误>

预测结果中的反例 → 在实际中是正例 → 的所有样本被称为假反例(FN)<预测错误>

预测结果中的反例 → 在实际中是反例 → 的所有样本被称为真反例(TN)<预测正确>

这里就不得不提及精确率(precision)和召回率(recall): P r e c i s i o n = T P T P + F P   R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值