4.1 学习目标
掌握常见的评价函数和损失函数Dice、IoU、BCE、Focal Loss、Lovász-Softmax;
掌握评价/损失函数的实践;
4.2 TP TN FP FN
在讲解语义分割中常用的评价函数和损失函数之前,先补充一**TP(真正例 true positive) TN(真反例 true negative) FP(假正例 false positive) FN(假反例 false negative)**的知识。在分类问题中,我们经常看到上述的表述方式,以二分类为例,我们可以将所有的样本预测结果分成TP、TN、 FP、FN四类,并且每一类含有的样本数量之和为总样本数量,即TP+FP+FN+TN=总样本数量。
上述的概念都是通过以预测结果的视角定义的,可以依据下面方式理解:
预测结果中的正例 → 在实际中是正例 → 的所有样本被称为真正例(TP)<预测正确>
预测结果中的正例 → 在实际中是反例 → 的所有样本被称为假正例(FP)<预测错误>
预测结果中的反例 → 在实际中是正例 → 的所有样本被称为假反例(FN)<预测错误>
预测结果中的反例 → 在实际中是反例 → 的所有样本被称为真反例(TN)<预测正确>
这里就不得不提及精确率(precision)和召回率(recall): P r e c i s i o n = T P T P + F P R