2000-2020年GlobeLand30(GLC30)数据集下载
扫描文末二维码,关注微信公众号:ThsPool
后台回复g005,领取 2000-2020年GlobeLand30(GLC30)数据集
GlobeLand30(GLC30)介绍
GlobeLand30数据集是全球首套30米分辨率的全球地表覆盖数据集,为环境变化研究、地理国情监测和可持续发展规划提供了不可或缺的基础信息和关键参量。
- 相关文献:《Analysis and Applications of GlobeLand30: A Review》
https://www.researchgate.net/publication/318740669_Analysis_and_Applications_of_GlobeLand30_A_Review
地表覆盖类型
GlobeLand30数据集包含了十个主要的地表覆盖类型,包括耕地、森林、草地、灌木地、湿地、水体、苔原、人造地表、裸地、冰川和永久积雪。这些地表覆盖类型对于研究环境变化、监测地理国情以及制定可持续发展计划至关重要。
值 | 类型 | 内容 |
---|---|---|
10 | 耕地 | 用于种植农作物的土地,包括水田、灌溉旱地、雨养旱地、菜地、牧草种植地、大棚用地、以种植农作物为主间有果树及其他经济乔木的土地,以及茶园、咖啡园等灌木类经济作物种植地。 |
20 | 林地 | 乔木覆盖且树冠盖度超过30%的土地,包括落叶阔叶林、常绿阔叶林、落叶针叶林、常绿针叶林、混交林,以及树冠盖度为10-30%的疏林地。 |
30 | 草地 | 天然草本植被覆盖,且盖度大于10%的土地,包括草原、草甸、稀树草原、荒漠草原,以及城市人工草地等。 |
40 | 灌木地 | 灌木覆盖且灌丛覆盖度高于30%的土地,包括山地灌丛、落叶和常绿灌丛,以及荒漠地区覆盖度高于10%的荒漠灌丛。 |
50 | 湿地 | 位于陆地和水域的交界带,有浅层积水或土壤过湿的土地,多生长有沼生或湿生植物。包括内陆沼泽、湖泊沼泽、河流洪泛湿地、森林/灌木湿地、泥炭沼泽、红树林、盐沼等。 |
60 | 水体 | 陆地范围液态水覆盖的区域,包括江河、湖泊、水库、坑塘等。 |
70 | 苔原 | 寒带及高山环境下由地衣、苔藓、多年生耐寒草本和灌木植被覆盖的土地,包括灌丛苔原、禾本苔原、湿苔原、高寒苔原、裸地苔原等。 |
80 | 人造地表 | 由人工建造活动形成的地表,包括城镇等各类居民地、工矿、交通设施等,不包括建设用地内部连片绿地和水体。 |
90 | 裸地 | 植被覆盖度低于10%的自然覆盖土地,包括荒漠、沙地、砾石地、裸岩、盐碱地等。 |
100 | 冰川和永久积雪 | 由永久积雪、冰川和冰盖覆盖的土地,包括高山地区永久积雪、冰川,以及极地冰盖等。 |
数据生产流程概述
数据来源
- 选择30米多光谱影像,包括美国陆地资源卫星(Landsat)的TM5、 ETM+、OLI多光谱影像,以及中国环境减灾卫星(HJ-1)和16米分辨率高分一号(GF-1)的多光谱影像。
数据选取原则
- 在保障无云(少云)的情况下,选择基准年或更新年度±2年内植被生长季的多光谱影像。对于获取困难区域,可以放宽获取时间要求,以确保数据的全球覆盖完整性。
分类方式
- 采用人机交互方式进行地表覆盖分类,即利用人工智能技术辅助人工判读和编辑。
具体步骤
- 构建分类辅助信息:利用多源遥感数据和地理信息数据。
- 初步分类:使用机器学习算法进行初步分类。
- 人工判读和编辑:利用专业软件进行人工判读和编辑。
- 质量控制:利用质量控制系统进行质量检查和修正。
精度评估
- 使用抽样模型进行精度评价,从全球853幅或966幅数据中抽取部分图幅,布设大量检验样本,计算总体精度和Kappa系数等指标。
分辨率优势
目前现有的全球地表覆盖数据集的分辨率从1公里到300米不等,但这远远无法满足需求,因此迫切需要更高分辨率的全球地表覆盖数据集。GlobeLand30数据集的研制填补了这一空白,提供了更为详细和准确的地表覆盖空间分布信息,能够更好地描绘人类土地利用活动及其所形成的景观格局。
数据应用
GlobeLand30数据集包括了2000年,2010年和2020年的数据,可以支持地表覆盖变化的监测和分析。这些数据集由同一个研究团队使用相同的分类方法制作,具有较好的一致性,确保了数据分析的客观性和准确性。
应用价值
- 环境变化研究:提供全球地表覆盖变化的数据支持,可用于分析自然环境变化趋势。
- 地理国情监测:揭示各地区的地表覆盖特征,为国家地理信息监测提供重要依据。
- 可持续发展规划:辅助制定可持续发展政策,评估土地利用对可持续性的影响。
如果这对您有所帮助,希望点赞支持一下作者! 😊
点击查看原文
https://mp.weixin.qq.com/s?__biz=Mzk0MTU1MjU5Mw==&mid=2247484784&idx=1&sn=82a828c31cb5c901e2d6cbddbd5076a2&chksm=c2d1e3cef5a66ad8b1e0aed8c514aee6234a2e76c218af8046af86aee7f71e6500a7736be41b#rd