首先要做的是确保您使用的是 NVIDIA 显卡 (NVIDIA),否则安装它将不起作用。
一、安装 CUDA
- 将图形驱动程序更新到最新版本并执行此操作,例如,在下图中,允许安装的最大 CUDA 版本号(例如此处显示的 11.8)将不会安装 cuda12.1
nvidia-smi
- 先开启https://developer.nvidia.com/cuda-downloadsURL,根据您的操作系统版本,选择合适的 CUDA 版本,例如,在下图中,选择 Windows 10 操作系统x86_64然后单击 exe[local]
注意:如果当前版本高于您的计算机允许的版本,例如允许nvidia-smi
11.8 之后,但这里是 12.3,那么它不会安装,您需要单击 https://developer.nvidia.com/cuda-toolkit-archive 链接下载旧版本
下载完成后,双击将其打开
然后单击 OK 并在下图中选择 “Custom Installation”,然后选择 Next
在自定义安装选项界面中,仅选择了 CUDA,所有其他选择都被删除,如下所示
安装完成后,将安装 default 目录,或者如果安装了版本 11.8,则将安装 lastinstead 目录,依此类推。如果安装成功但没有目录,请检查它是否在 theredirectory 中。C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1
v12.1
v11.8
C:\Program Files(x86)\NVIDIA GPU Computing Toolkit\CUDA\v12.1
二、安装 cuBLASxx.dll 和 cudnn
如果要在更快模式下启用 cuda 加速,则必须安装 cuBLAS 和 cudnn,否则会崩溃或报告 “cublasxxx.dll 不存在”
下载文件并将其中的 dll 文件复制到 C:/Windows/System32 目录或 exe 所在软件的根目录
在地址栏中输入任意文件夹打开一个黑色窗口,然后输入命令查看当前 CUDA 版本cmd
nvcc -V
CUDA 11.x 版本可以在此处下载https://github.com/jianchang512/stt/releases/download/0.0/cuBLAS.and.cuDNN_CUDA11_win_v4.7z
CUDA 12.x 版本可在此处下载https://github.com/jianchang512/stt/releases/download/0.0/cuBLAS.and.cuDNN_CUDA12_win_v1.7z
三、测试是否成功
- execute 返回 CUDA 版本号
nvcc -V