YOLOv8模型训练过程

一,conda环境的创建就略过了

        先进行库工具安装

        pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
二,在github上下载好模型,先预测一把
        yolo predict model=yolov8n.pt source=ultralytics/assets/bus.jpg

        如果无法自动下载yolov8n.pt可以先在别的地方下载好,再拖到项目下,在model=下给出文件地址即可

三,准备自己数据集的格式

data    (从这里可以看出,在训练时,去同级labels中去寻找对应的标注txt文件的)
——train
    ——images(一个个的单张图片)
    ——labels  (名字相同的txt文件)
——val
    ——imags
    ——labels

四,yaml(这个也可以放绝对路径,绝对路径更安全一些)
        train: /data/train
        val: /data/val
        test: /data/test

# number of classes
nc: 1

五,单卡训练指令

yolo task=detect mode=train model=yolov8n.pt data=E:\yolov8\dataset_2.yaml batch=15 epochs=10 imgsz=640 workers=0 device=cpu
六,针对图片进行预测 ——source可以是单张图片,也可以是一个文件夹
yolo task=detect mode=predict model=runs/detect/train/weights/best.pt source=data2/test device=cpu
七,onnx的导出
需要安装 onnxslim  onnxruntime
pip install  onnxslim  onnxruntime -i https://mirrors.aliyun.com/pypi/simple/
导出onnx的代码
yolo task=detect mode=export model=runs/detect/train/weights/best.pt format=onnx

八,输出结构介绍

通过NEtron看一下输出结构 输出1*5*8400
1*(center_x,center_y, w, h+n*class(config))*8400  这里只有一个类别,所以是4+1=5
640*640的图片下采样8倍,16倍,32倍的预测
80*80+40*40+20*20=8400
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值