第五章 误差反向传播

本文详细介绍了深度学习中的误差反向传播算法,包括ReLU和Sigmoid激活函数的实现,以及梯度确认的过程,确保了反向传播的正确性。通过有序字典OrderDict来管理计算过程,确保了反向传播的顺序。
摘要由CSDN通过智能技术生成

5.1.2 局部计算

局部:这个词的意思是“与自己相关的某个小范围”。局部计算是指,无论全局发生了什么,都能只根据与自己相关的信息输出接下来的结果。

5.5 激活函数层的实现

5.5.1 ReLU层

Relu公式:
y = { x ( x > 0 ) y ( x ≤ 0 ) y=\left\{ \begin{aligned} x & & (x > 0) \\ y & & (x \leq 0) \\ \end{aligned} \right. y={ xy(x>0)(x0)

Relu导数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值