8-周赛334总结
终于过了三题,第二题卡了很久,最后才灵光一现。然后第四题就来不及做了,太着急了,卡在了反复移动计算时间点上。这周继续努力啦
左右元素和的差值【LC2574】
给你一个下标从 0 开始的整数数组
nums
,请你找出一个下标从 0 开始的整数数组answer
,其中:
answer.length == nums.length
answer[i] = |leftSum[i] - rightSum[i]|
其中:
leftSum[i]
是数组nums
中下标i
左侧元素之和。如果不存在对应的元素,leftSum[i] = 0
。rightSum[i]
是数组nums
中下标i
右侧元素之和。如果不存在对应的元素,rightSum[i] = 0
。返回数组
answer
。
-
思路:简单模拟
按照要求求出
leftSum[i]
和rightSum[i]
,然后计算出answer[i] = |leftSum[i] - rightSum[i]|
class Solution { public int[] leftRigthDifference(int[] nums) { int n = nums.length; int[] res = new int[n]; int[] left = new int[n]; int[] right = new int[n]; for (int i = 1; i < n; i++){ left[i] = left[i - 1] + nums[i - 1]; } for (int i = n - 2; i >= 0; i--){ right[i] = right[i + 1] + nums[i + 1]; } for (int i = 0; i < n; i ++){ res[i] = Math.abs(left[i] - right[i]); } return res; } }
- 复杂度
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( n ) O(n) O(n)
- 复杂度
-
优化:一个循环计算
left
和right
class Solution { public int[] leftRigthDifference(int[] nums) { int n = nums.length; int[] res = new int[n]; int[] left = new int[n]; int[] right = new int[n]; for (int i = 1; i < n; i++){ left[i] = left[i - 1] + nums[i - 1]; right[n - i - 1] = right[n - i] + nums[n - i]; } for (int i = 0; i < n; i ++){ res[i] = Math.abs(left[i] - right[i]); } return res; } }
找出字符串的可整除数组【LC2575】
给你一个下标从 0 开始的字符串
word
,长度为n
,由从0
到9
的数字组成。另给你一个正整数m
。
word
的 可整除数组div
是一个长度为n
的整数数组,并满足:
- 如果
word[0,...,i]
所表示的 数值 能被m
整除,div[i] = 1
- 否则,
div[i] = 0
返回
word
的可整除数组。
-
思路【重点在于如何处理越界 卡了贼久】
- 使用变量
cur
记录word[0,i]
的整数值,如果该值能被m
整除,那么ans[i]=1
- 由于字符串的长度
1
≤
n
≤
1
0
5
1 \le n \le 10^5
1≤n≤105,那么无论用int或者long类型存储
cur
遍历过程中一定会越界(BigInteger会超时),那么如何处理越界的问题成了关键。 - 我们需要关注的情况是
cur
能被m
整除,也就是说余数为0,那么可以只记录累计余数的数值,因为商是m
的倍数,在移动i
的过程中扩大了10倍,仍是m
的倍数,因此可以省略不记! - 还需要注意的是
1
≤
m
≤
1
0
9
1 \le m \le 10^9
1≤m≤109,如果遍历过程中,余数
cur
的值很大时,再乘以10倍,需要使用long类型记录结果,使用int类型会存在越界
class Solution { public int[] divisibilityArray(String word, int m) { int n = word.length(); int[] res = new int[n]; long cur = 0L; for (int i = 0; i < n; i++){ cur = (cur * 10 + word.charAt(i) - '0') % m; if (cur == 0){ res[i] = 1; } } return res; } }
- 复杂度
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( 1 ) O(1) O(1)
- 使用变量
求出最多标记下标【LC2576】
给你一个下标从 0 开始的整数数组
nums
。一开始,所有下标都没有被标记。你可以执行以下操作任意次:
- 选择两个 互不相同且未标记 的下标
i
和j
,满足2 * nums[i] <= nums[j]
,标记下标i
和j
。请你执行上述操作任意次,返回
nums
中最多可以标记的下标数目。
贪心+双指针
-
思路:贪心+双指针
如果数组中每一个数都有对应的数可以匹配,那么最多有 n / 2 n/2 n/2对,并且将数组从小到大排序后,一定是
nums[i]
匹配nums[n/2+i]
- 因为将数组从小到大排序后
nms[i]
能匹配nums[n/2+i]
的话,就一定能匹配nums[n/2+i]
之后的数组,所以为了使能够匹配的对数最多,我们应该使较小的数值优先匹配在后半个数组中首次匹配到的数字【局部最优】
因此,可以将数组从小到大排序后,将数组分为前后两个部分 n u m s [ 0 , n / 2 ) nums[0,n/2) nums[0,n/2)和 n u m s [ n / 2 : n ) nums[n/2:n) nums[n/2:n),使用左指针 l l l指向前半个数组的第一个元素,使用右指针 r r r指向后半个数组的第二个元素,根据大小情况,移动指针
- 如果 n u m s [ l ] ∗ 2 ≤ n u m s [ r ] nums[l]*2 \le nums[r] nums[l]∗2≤nums[r],那么有可以匹配的对数,同时移动左右指针
- 否则,只移动右指针
最后总对数即为 2 ∗ l 2*l 2∗l
- 因为将数组从小到大排序后
-
实现
class Solution { public int maxNumOfMarkedIndices(int[] nums) { int res = 0, n = nums.length; Arrays.sort(nums); int l = 0; int r = n / 2 ; while (l < n / 2 && r < n){ if (nums[l] * 2 <= nums[r]){ // res += 2; l++; r++; }else{ r++; } } return 2 * l; } }
- 复杂度
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( 1 ) O(1) O(1)
- 复杂度
在网格图中访问一个格子的最少时间【LC2577】
给你一个
m x n
的矩阵grid
,每个元素都为 非负 整数,其中grid[row][col]
表示可以访问格子(row, col)
的 最早 时间。也就是说当你访问格子(row, col)
时,最少已经经过的时间为grid[row][col]
。你从 最左上角 出发,出发时刻为
0
,你必须一直移动到上下左右相邻四个格子中的 任意 一个格子(即不能停留在格子上)。每次移动都需要花费 1 单位时间。请你返回 最早 到达右下角格子的时间,如果你无法到达右下角的格子,请你返回
-1
。
-
思路:BFS+最短路径
-
由于需要求出访问到右下角的最早时间,每次只能移动一格,也就是最短路径,因此可以考虑使用最短路径Dijkstra 算法求最短路径。
-
由于每个时间点必须移动一次,并且可以移动到访问过的格子,因此,如果我们从原点可以访问到相邻的格子,那么每个格子均能被访问到;否则,只能停留在原点。那么假设走到格子 [ x 1 , y 1 ] [x_1,y_1] [x1,y1]的最早时间为 t 1 t_1 t1,走到相邻格子 [ x 2 , y 2 ] [x_2,y_2] [x2,y2]的最早时间为 t 2 t_2 t2
- 如果 t 1 + 1 ≥ g r i d [ x 2 ] [ y 2 ] t_1+1 \ge grid[x_2][y_2] t1+1≥grid[x2][y2],那么我们可以直接从 [ x 1 , y 1 ] [x_1,y_1] [x1,y1]走到 [ x 2 , y 2 ] [x_2,y_2] [x2,y2],那么 t 2 = t 1 + 1 t_2=t_1+1 t2=t1+1
- 否则,如果 t 1 + 1 < g r i d [ x 2 ] [ y 2 ] t_1+1 \lt grid[x_2][y_2] t1+1<grid[x2][y2],那么我们需要在格子 [ x 1 , y 1 ] [x_1,y_1] [x1,y1]和上一个格子之间进行反复移动,直到可以进入格子 [ x 2 , y 2 ] [x_2,y_2] [x2,y2],那么反复移动的时间为$\lfloor (grid[x_2][y_2]-t_1)/2 \rfloor 次,在时间 次,在时间 次,在时间t_1 + \lfloor (grid[x_2][y_2]-t_1)/2 \rfloor * 2 回到 回到 回到[x_1,y_1] ,那么 ,那么 ,那么t_2=t_1 + \lfloor (grid[x_2][y_2]-t_1)/2 \rfloor * 2+1$
-
实现时,使用BFS和优先队列实现,优先队列存储三元组 [ x , y , t i m e ] [x,y,time] [x,y,time],以时间升序排序,保证到达右下角时的时间是最小的,每次将未访问过的格子对应的三元组放入优先队列中,直至到达右下角
-
-
实现
class Solution { public int minimumTime(int[][] grid) { int m = grid.length, n = grid[0].length; int[][] dir = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; if (grid[1][0] > 1 && grid[0][1] > 1 ) return -1;// 无法达到右下角 PriorityQueue<int[]> pq = new PriorityQueue<>((o1, o2) -> o1[2] - o2[2]); pq.add(new int[]{0, 0, 0}); boolean[][] visited = new boolean[m][n];// 存储最短时间 visited[0][0] = true; while(!pq.isEmpty()){ int[] pos = pq.poll(); for (int j = 0; j < 4; j++){ int nextX = pos[0] + dir[j][0]; int nextY = pos[1] + dir[j][1]; if (nextX >= 0 && nextX < m && nextY >= 0 && nextY < n && !visited[nextX][nextY]){ int t = pos[2] + 1;// grid[nextX][nextY] <= pos[2] 直接走进 // 来回等待时间 if (grid[nextX][nextY] > pos[2] + 1){ t += (grid[nextX][nextY] - pos[2]) / 2 * 2;// 等待的时间 } if (nextX == m - 1 && nextY == n - 1) return t; pq.add(new int[]{nextX, nextY, t}); visited[nextX][nextY] = true; } } } return -1; } }
-
复杂度
- 时间复杂度: O ( m n l o g m n ) O(mnlogmn) O(mnlogmn), m 、 n m、n m、n 为矩阵的行和列数节点数。
- 空间复杂度: O ( m n ) O(mn) O(mn)
-