8-周赛334总结

8-周赛334总结

终于过了三题,第二题卡了很久,最后才灵光一现。然后第四题就来不及做了,太着急了,卡在了反复移动计算时间点上。这周继续努力啦

左右元素和的差值【LC2574】

给你一个下标从 0 开始的整数数组 nums ,请你找出一个下标从 0 开始的整数数组 answer ,其中:

  • answer.length == nums.length
  • answer[i] = |leftSum[i] - rightSum[i]|

其中:

  • leftSum[i] 是数组 nums 中下标 i 左侧元素之和。如果不存在对应的元素,leftSum[i] = 0
  • rightSum[i] 是数组 nums 中下标 i 右侧元素之和。如果不存在对应的元素,rightSum[i] = 0

返回数组 answer

  • 思路:简单模拟

    按照要求求出leftSum[i]rightSum[i],然后计算出answer[i] = |leftSum[i] - rightSum[i]|

    class Solution {
        public int[] leftRigthDifference(int[] nums) {
            int n = nums.length;
            int[] res = new int[n];
            int[] left = new int[n];
            int[] right = new int[n];
            for (int i = 1; i < n; i++){
                left[i] = left[i - 1] + nums[i - 1];
            }
            for (int i = n - 2; i >= 0; i--){
                right[i] = right[i + 1] + nums[i + 1];
            }
            for (int i = 0; i < n; i ++){
                res[i] = Math.abs(left[i] - right[i]);
            }
            return res;
    
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( n ) O(n) O(n)
      • 空间复杂度: O ( n ) O(n) O(n)
  • 优化:一个循环计算leftright

    class Solution {
        public int[] leftRigthDifference(int[] nums) {
            int n = nums.length;
            int[] res = new int[n];
            int[] left = new int[n];
            int[] right = new int[n];
            for (int i = 1; i < n; i++){
                left[i] = left[i - 1] + nums[i - 1];
                right[n - i - 1] = right[n - i] + nums[n - i];
            }
            for (int i = 0; i < n; i ++){
                res[i] = Math.abs(left[i] - right[i]);
            }
            return res;
    
        }
    }
    

找出字符串的可整除数组【LC2575】

给你一个下标从 0 开始的字符串 word ,长度为 n ,由从 09 的数字组成。另给你一个正整数 m

word可整除数组 div 是一个长度为 n 的整数数组,并满足:

  • 如果 word[0,...,i] 所表示的 数值 能被 m 整除,div[i] = 1
  • 否则,div[i] = 0

返回 word 的可整除数组。

  • 思路【重点在于如何处理越界 卡了贼久】

    • 使用变量cur记录word[0,i]的整数值,如果该值能被m整除,那么ans[i]=1
    • 由于字符串的长度 1 ≤ n ≤ 1 0 5 1 \le n \le 10^5 1n105,那么无论用int或者long类型存储cur遍历过程中一定会越界(BigInteger会超时),那么如何处理越界的问题成了关键。
    • 我们需要关注的情况是cur能被m整除,也就是说余数为0,那么可以只记录累计余数的数值,因为商是m的倍数,在移动i的过程中扩大了10倍,仍是m的倍数,因此可以省略不记!
    • 还需要注意的是 1 ≤ m ≤ 1 0 9 1 \le m \le 10^9 1m109,如果遍历过程中,余数cur的值很大时,再乘以10倍,需要使用long类型记录结果,使用int类型会存在越界
    class Solution {
        public int[] divisibilityArray(String word, int m) {
            int n = word.length();
            int[] res = new int[n];
            long cur = 0L;
            for (int i = 0; i < n; i++){
                cur = (cur * 10 + word.charAt(i) - '0') % m;
                if (cur == 0){
                    res[i] = 1;
                }     
            }
            return res;
    
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( n ) O(n) O(n)
      • 空间复杂度: O ( 1 ) O(1) O(1)

求出最多标记下标【LC2576】

给你一个下标从 0 开始的整数数组 nums

一开始,所有下标都没有被标记。你可以执行以下操作任意次:

  • 选择两个 互不相同且未标记 的下标 ij ,满足 2 * nums[i] <= nums[j] ,标记下标 ij

请你执行上述操作任意次,返回 nums 中最多可以标记的下标数目。

贪心+双指针

  • 思路:贪心+双指针

    如果数组中每一个数都有对应的数可以匹配,那么最多有 n / 2 n/2 n/2对,并且将数组从小到大排序后,一定是nums[i]匹配nums[n/2+i]

    • 因为将数组从小到大排序后nms[i]能匹配nums[n/2+i]的话,就一定能匹配nums[n/2+i]之后的数组,所以为了使能够匹配的对数最多,我们应该使较小的数值优先匹配在后半个数组中首次匹配到的数字【局部最优】

    因此,可以将数组从小到大排序后,将数组分为前后两个部分 n u m s [ 0 , n / 2 ) nums[0,n/2) nums[0,n/2) n u m s [ n / 2 : n ) nums[n/2:n) nums[n/2:n),使用左指针 l l l指向前半个数组的第一个元素,使用右指针 r r r指向后半个数组的第二个元素,根据大小情况,移动指针

    • 如果 n u m s [ l ] ∗ 2 ≤ n u m s [ r ] nums[l]*2 \le nums[r] nums[l]2nums[r],那么有可以匹配的对数,同时移动左右指针
    • 否则,只移动右指针

    最后总对数即为 2 ∗ l 2*l 2l

  • 实现

    class Solution {
        public int maxNumOfMarkedIndices(int[] nums) {
            int res = 0, n = nums.length;
            Arrays.sort(nums);
            int l = 0;
            int r = n / 2 ;
            while (l < n / 2 && r < n){
                if (nums[l] * 2 <= nums[r]){
                    // res += 2;
                    l++;
                    r++;
                }else{
                    r++;
                }
            }
            return 2 * l;
        
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( n ) O(n) O(n)
      • 空间复杂度: O ( 1 ) O(1) O(1)

在网格图中访问一个格子的最少时间【LC2577】

给你一个 m x n 的矩阵 grid ,每个元素都为 非负 整数,其中 grid[row][col] 表示可以访问格子 (row, col)最早 时间。也就是说当你访问格子 (row, col) 时,最少已经经过的时间为 grid[row][col]

你从 最左上角 出发,出发时刻为 0 ,你必须一直移动到上下左右相邻四个格子中的 任意 一个格子(即不能停留在格子上)。每次移动都需要花费 1 单位时间。

请你返回 最早 到达右下角格子的时间,如果你无法到达右下角的格子,请你返回 -1

  • 思路:BFS+最短路径

    • 由于需要求出访问到右下角的最早时间,每次只能移动一格,也就是最短路径,因此可以考虑使用最短路径Dijkstra 算法求最短路径。

    • 由于每个时间点必须移动一次,并且可以移动到访问过的格子,因此,如果我们从原点可以访问到相邻的格子,那么每个格子均能被访问到;否则,只能停留在原点。那么假设走到格子 [ x 1 , y 1 ] [x_1,y_1] [x1,y1]的最早时间为 t 1 t_1 t1,走到相邻格子 [ x 2 , y 2 ] [x_2,y_2] [x2,y2]的最早时间为 t 2 t_2 t2

      • 如果 t 1 + 1 ≥ g r i d [ x 2 ] [ y 2 ] t_1+1 \ge grid[x_2][y_2] t1+1grid[x2][y2],那么我们可以直接从 [ x 1 , y 1 ] [x_1,y_1] [x1,y1]走到 [ x 2 , y 2 ] [x_2,y_2] [x2,y2],那么 t 2 = t 1 + 1 t_2=t_1+1 t2=t1+1
      • 否则,如果 t 1 + 1 < g r i d [ x 2 ] [ y 2 ] t_1+1 \lt grid[x_2][y_2] t1+1<grid[x2][y2],那么我们需要在格子 [ x 1 , y 1 ] [x_1,y_1] [x1,y1]和上一个格子之间进行反复移动,直到可以进入格子 [ x 2 , y 2 ] [x_2,y_2] [x2,y2],那么反复移动的时间为$\lfloor (grid[x_2][y_2]-t_1)/2 \rfloor 次,在时间 次,在时间 次,在时间t_1 + \lfloor (grid[x_2][y_2]-t_1)/2 \rfloor * 2 回到 回到 回到[x_1,y_1] ,那么 ,那么 ,那么t_2=t_1 + \lfloor (grid[x_2][y_2]-t_1)/2 \rfloor * 2+1$
    • 实现时,使用BFS和优先队列实现,优先队列存储三元组 [ x , y , t i m e ] [x,y,time] [x,y,time],以时间升序排序,保证到达右下角时的时间是最小的,每次将未访问过的格子对应的三元组放入优先队列中,直至到达右下角

  • 实现

    class Solution {
        public int minimumTime(int[][] grid) { 
            int m = grid.length, n = grid[0].length;
            int[][] dir = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
            if (grid[1][0] > 1 && grid[0][1] > 1 ) return -1;// 无法达到右下角
            PriorityQueue<int[]> pq = new PriorityQueue<>((o1, o2) -> o1[2] - o2[2]);
            pq.add(new int[]{0, 0, 0});
            boolean[][] visited = new boolean[m][n];// 存储最短时间
            visited[0][0] = true;   
            while(!pq.isEmpty()){
                int[] pos = pq.poll();
                for (int j = 0; j < 4; j++){
                    int nextX = pos[0] + dir[j][0];
                    int nextY = pos[1] + dir[j][1];
                    if (nextX >= 0 && nextX < m && nextY >= 0 && nextY < n && !visited[nextX][nextY]){
                        int t = pos[2] + 1;// grid[nextX][nextY] <= pos[2] 直接走进
                        // 来回等待时间
                        if (grid[nextX][nextY] > pos[2] + 1){
                            t += (grid[nextX][nextY] - pos[2]) / 2 * 2;// 等待的时间
                        }
                        if (nextX == m - 1 && nextY == n - 1) return t;
                        pq.add(new int[]{nextX, nextY, t});
                        visited[nextX][nextY] = true;
                        
                    }
                }
            }
            return -1;
        }
        
    }
    
    • 复杂度

      • 时间复杂度: O ( m n l o g m n ) O(mnlogmn) O(mnlogmn) m 、 n m、n mn 为矩阵的行和列数节点数。
      • 空间复杂度: O ( m n ) O(mn) O(mn)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值