11-周赛337总结

11-周赛337总结

第三题没有想到是子集问题,只记得做过类似的题,思路还是原来错误的思路,然后就直接去做第四题了,战绩3道,练练子集回溯,加深印象

奇偶位数

给你一个 整数 n

even 表示在 n 的二进制形式(下标从 0 开始)中值为 1 的偶数下标的个数。

odd 表示在 n 的二进制形式(下标从 0 开始)中值为 1 的奇数下标的个数。

返回整数数组 answer ,其中 answer = [even, odd]

  • 思路

    从最低位开始判断,如果该位为0,那么将其对应的计数加1

  • 实现

    class Solution {
        public int[] evenOddBit(int n) {
            int[] res = new int[2];
            int index = 0;
            while (n > 0){
                if ((n & 1) == 1){
                    res[index % 2]++;
                }
                n = (n >> 1);  
                index++;
            }
            return res;
    
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( l o g n ) O(logn) O(logn)
      • 空间复杂度: O ( 1 ) O(1) O(1)

检查骑士巡视方案【LC】

骑士在一张 n x n 的棋盘上巡视。在有效的巡视方案中,骑士会从棋盘的 左上角 出发,并且访问棋盘上的每个格子 恰好一次

给你一个 n x n 的整数矩阵 grid ,由范围 [0, n * n - 1] 内的不同整数组成,其中 grid[row][col] 表示单元格 (row, col) 是骑士访问的第 grid[row][col] 个单元格。骑士的行动是从下标 0 开始的。

如果 grid 表示了骑士的有效巡视方案,返回 true;否则返回 false

注意,骑士行动时可以垂直移动两个格子且水平移动一个格子,或水平移动两个格子且垂直移动一个格子。下图展示了骑士从某个格子出发可能的八种行动路线。
img

  • 思路:

    将每个单元格位置和值组成的三元组放入小顶堆中,保证按顺序移动。

    • 首先需要判断起点是否位于左上角,否则直接返回false【因为这个WA了】
    • 然后判断能否移动至下一个位置,根据横纵坐标的差值判断,差值的可能性有八种,如果符合任意一种则移动至下一个位置,否则返回false
    • 如果可以移动至最后一个节点,那么返回true
  • 实现

    class Solution {
        public boolean checkValidGrid(int[][] grid) {
            int n = grid.length;
            // 存储三元组
            PriorityQueue<int[]> pq = new PriorityQueue<>((o1, o2) -> o1[2] - o2[2]);
            for (int i = 0; i < n; i++){
                for (int j = 0; j < n; j++){
                    pq.add(new int[]{i, j, grid[i][j]});
                }
            }
            // 判断起点
            int[] pre = pq.poll();
            if (pre[0] != 0 || pre[1] != 0) return false;
            while (!pq.isEmpty()){
                int[] next = pq.poll();
                int[] move = {next[0] - pre[0], next[1] - pre[1]};
                // 判断能否移动至下一个位置
                if (!isCorrect(move)){
                    return false;
                }
                pre = next;
            }
            return true;
        }
        public boolean isCorrect(int[] move){
            int[] d1 = {2, -2};
            int[] d2 = {1, -1};
            for (int i = 0; i < 2; i++){
                for (int j = 0; j < 2;j++){
                    if (move[0] == d1[i] && move[1] == d2[j]){
                        return true;
                    }
                    if (move[0] == d2[i] && move[1] == d1[j]){
                        return true;
                    }
                }
            }
            return false;
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
      • 空间复杂度: O ( n 2 ) O(n^2) O(n2)

*美丽子集的数目

给你一个由正整数组成的数组 nums 和一个 整数 k

如果 nums 的子集中,任意两个整数的绝对差均不等于 k ,则认为该子数组是一个 美丽 子集。

返回数组 nums非空美丽 的子集数目。

nums 的子集定义为:可以经由 nums 删除某些元素(也可能不删除)得到的一个数组。只有在删除元素时选择的索引不同的情况下,两个子集才会被视作是不同的子集。

  • 思路:

    回溯枚举每一种美丽的子集,统计其数目。使用哈希表统计当前子集出现的数字及对应的次数,然后回溯搜索放nums[i]或者不放nums[i]对应的子集数目,注意只有当前子集中不存在 n u m s [ i ] − k nums[i] - k nums[i]k k − n u m s [ i ] k-nums[i] knums[i]时,才可以将nums[i]放入该子集中

  • 回溯三部曲

    • 回溯函数模板返回值以及参数

      • 返回值:int 存储子集数目
      • nums,k,i(记录本层递归中选择的数字)
      • 全局变量:path(当前子集的数字及对应的次数)
    • 回溯函数终止条件

      • 当搜索到数组的末尾时返回,如果不为空集则返回1
    • 回溯搜索的遍历过程:分两种情况考虑

      • 不选择单词nums[i],直接递归到下一个数字
      • 选择单词nums[i],不存在相减为 k k k的数时,才能将该数字放入子集中,递归结束后需要回溯
    class Solution {
        Map<Integer, Integer> path;
        public int beautifulSubsets(int[] nums, int k) {
            path = new HashMap<>();
            return backtracking(nums, k, 0);
        }
        public int backtracking(int[] nums, int k, int i){
            if (i == nums.length ) return path.size() > 0 ? 1 : 0;
            // 如果哈希表中, 不存在nums[i]-k和k + nums[i],才可以选nums[i]
            int res = 0;
            if (!path.containsKey(nums[i] - k) && !path.containsKey(k + nums[i])){
                path.put(nums[i], path.getOrDefault(nums[i], 0) + 1);
                res += backtracking(nums, k, i + 1);
                path.put(nums[i], path.getOrDefault(nums[i], 0) - 1);
                if (path.get(nums[i]) <= 0){
                    path.remove(nums[i]);
                }
            }
            // 不选nums[i]
            res += backtracking(nums, k, i + 1);
            return res;
            
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( 2 n ) O(2^n) O(2n) n n nnums的长度
      • 空间复杂度: O ( n ) O(n) O(n)

执行操作后的最大 MEX【LC】

给你一个下标从 0 开始的整数数组 nums 和一个整数 value

在一步操作中,你可以对 nums 中的任一元素加上或减去 value

  • 例如,如果 nums = [1,2,3]value = 2 ,你可以选择 nums[0] 减去 value ,得到 nums = [-1,2,3]

数组的 MEX (minimum excluded) 是指其中数组中缺失的最小非负整数。

  • 例如,[-1,2,3] 的 MEX 是 0 ,而 [1,0,3] 的 MEX 是 2

返回在执行上述操作 任意次 后,nums 的最大 MEX

先超时了一次,然后改代码思路不够清晰WA了几次

  • 思路

    将每个数的数值转化为 [ 0 , v a l u e − 1 ] [0,value-1] [0,value1]中的某个数,使用哈希表记录每个数值对应的次数,然后按照 [ 0 , v a l u e − 1 ] [0,value-1] [0,value1]的顺序访问哈希表,每次将对应的次数减1,碰到次数为0的值时终止访问,此时的访问次数即为nums的最大MEX

    • 贪心的思想:我们需要尽可能的将每个值填充,然后再将值增大,使MXE最大
    • 每访问 [ 0 , v a l u e − 1 ] [0,value-1] [0,value1]一遍,相当于整体的值加了value
  • 实现

    class Solution {
        public int findSmallestInteger(int[] nums, int value) {
            int n = nums.length;
            HashMap<Integer, Integer> map = new HashMap<>();
            for (int i = 0; i < n; i++){
                if (nums[i] < 0){
                    int count = Math.abs(nums[i]) / value + (Math.abs(nums[i]) % value == 0 ? 0 : 1);
                    nums[i] += value * count ;
                }            
                while (nums[i] >= value){
                    int count = nums[i] / value ;
                    nums[i] -= value * count;
                }  
                map.put(nums[i], map.getOrDefault(nums[i], 0) + 1);
            }
            int cur = 0;
            while (map.containsKey(cur % value) && map.get(cur % value) > 0){
                map.put(cur % value, map.get(cur % value) - 1);
                cur++;
            }
            return cur;
    
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( 2 n ) O(2^n) O(2n) n n nnums的长度
      • 空间复杂度: O ( n ) O(n) O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值