编译优化已弄懂,详解

编译优化

众所周知,衡量一个编译器是否优秀的标准,除了它的编译速度和正确性以外,编译出的代码的质量也很重要。最近,作为XCC系列编译器作者的Dr. X发明了一种跨时代的优化算法:“NanGe不等式优化”。一个程序可以看成是由若干个连续的函数构成的,NanGe不等式算法能针对某一个函数进行优化,得到一个优化效果值, 不同的函数的效果值可能是不同的。但这个算法还有一个很大的Bug: 
该算法不能同时优化相邻的两个函数,否则就会直接Compile Error,值得注意的是,一个程序的第一个函数和最后一个函数也算是相邻的。 
现在给你一个程序从头到尾每个函数的优化效果值,Dr. X想用NanGe不等式对该程序的M个函数进行优化,他该怎么选择才能使总的优化效果值最大(前提是不能出现错误)?如果错误不能避免,请输出“Error!”

输入格式: 
输入文件的第一行包含两个正整数n、m。 
第二行为n个整数Ai。 
输出格式: 
输出文件仅一个整数,表示最后对该程序进行优化后的最大效果值。如果无解输出“Error!”,不包含引号。 
样例输入: 
样例输入1: 
7 3 
1 2 3 4 5 6 7

样例输入2: 
7 4 
1 2 3 4 5 6 7 
样例输出: 
样例输出1: 
15

样例输出2: 
Error! 
数据范围: 
对于全部数据:m<=n;-1000<=Ai<=1000 
N的大小对于不同数据有所不同: 
数据编号 N的大小 数据编号 N的大小 
1 40 11 2013 
2 45 12 5000 
3 50 13 10000 
4 55 14 49999 
5 200 15 111111 
6 200 16 148888 
7 1000 17 188888 
8 2010 18 199999 
9 2011 19 199999 
10 2012 20 200000 
提示: 
remove!!!

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define INF 10000
#define N 200001
#define PER(i,a,b) for(int i=a;i<=b;i++)
int n,t[2*N],pos[N],l[N*2],r[N*2],val[N],fa,m,ans;
void up(int x)
{
    while(val[t[x]]>val[t[x/2]]&&x>1) {swap(t[x],t[x/2]);swap(pos[t[x]],pos[t[x/2]]);x/=2;}  
}
void down(int x)
{
    int j;
    while(x*2<=n)
    {
        if(x*2==n||val[t[x*2]]>=val[t[x*2+1]]) j=x*2;else j=x*2+1;
        if(val[t[j]]>=val[t[x]])
        {
            swap(t[j],t[x]);swap(pos[t[j]],pos[t[x]]);
        }
        else break;
        x=j;
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    if(n/2<m)
    {
        cout<<"Error!\n";
        return 0;
    }
    PER(i,1,n)
    {
        scanf("%d",&val[i]);
        pos[i]=i;
        t[i]=i;
        up(i);
        l[i]=i-1;
        r[i]=i+1;
    }
    l[1]=n;r[n]=1;
    while(m--)
    {
        int x=t[1];
        ans+=val[x];
        val[x]=val[l[x]]+val[r[x]]-val[x];
        val[l[x]]=-INF;
        down(pos[l[x]]);val[r[x]]=-INF;down(pos[r[x]]);down(1);
        l[x]=l[l[x]];r[x]=r[r[x]];
        r[l[x]]=x;l[r[x]]=x;
    }
    cout<<ans<<"\n";
}
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56

未懂,要弄懂。这个题标准解法是借鉴网络流中的残余流思想,用堆来维护解决。映射建大根堆,记录每一个数值在堆中的位置好方便删除操作。每回出堆顶元素后,a[k]=a[l[k]]+a[r[k]]-a[k],l[k]和r[k]是k的左边节点和右边节点,即双链表思想,再将a[l[k]]和a[r[k]]删除,将新的a[k]加入堆中。就是说把三个打包后仍满足取了之后两边不能去的性质,且满足每次多一个点就可以A了

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页