1632: [Usaco2007 Feb]Lilypad Pond
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 737 Solved: 245
[Submit][Status][Discuss]
Description
Farmer John 建造了一个美丽的池塘,用于让他的牛们审美和锻炼。这个长方形的池子被分割成了 M 行和 N 列( 1 ≤ M ≤ 30 ; 1 ≤ N ≤ 30 ) 正方形格子的 。某些格子上有惊人的坚固的莲花,还有一些岩石,其余的只是美丽,纯净,湛蓝的水。 贝茜正在练习芭蕾舞,她从一个莲花跳跃到另一个莲花,当前位于一个莲花。她希望在莲花上一个一个的跳,目标是另一个给定莲花。她能跳既不入水,也不到一个岩石上。 令门外汉惊讶的是,贝茜的每次的跳跃像中国象棋的马一样:横向移动1,纵向移动2,或纵向移动1,横向移动2。贝茜有时可能会有多达8个选择的跳跃。 Farmer John 在观察贝茜的芭蕾舞联系,他意识到有时候贝茜有可能跳不到她想去的目的地,因为路上有些地方没有莲花。于是他想要添加几个莲花使贝茜能够完成任务。一贯节俭的Farmer John想添加最少数量的莲花。当然,莲花不能放在石头上。 请帮助Farmer John确定必须要添加的莲花的最少数量。在添加的莲花最少基础上,算出贝茜从起始点跳到目标点需要的最少的步数。最后,还要算出满足添加的莲花的最少数量时,跳跃最少步数的跳跃路径的条数。
Input
第 1 行: 两个整数 M , N
第 2..M + 1 行:第 i + 1 行,第 i + 1 行 有 N 个整数,表示该位置的状态: 0 为水; 1 为莲花; 2 为岩石; 3 为贝茜开始的位置; 4 为贝茜要去的目标位置.
Output
第 1 行: 一个整数: 需要添加的最少的莲花数. 如果无论如何贝茜也无法跳到,输出 -1.
第 2 行: 一个整数: 在添加的莲花最少基础上,贝茜从起始点跳到目标点需要的最少的步数。如果第1行输出-1,这行不输出。 第 3 行: 一个整数: 添加的莲花的最少数量时,跳跃步数为第2行输出的值的跳跃路径的条数 如果第1行输出-1,这行不输出。
Sample Input
4 8
0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 1
0 0 0 0 0 4 0 0
3 0 0 0 0 0 1 0
Sample Output
2
6
2
输出说明
至少要添加2朵莲花,放在了’x’的位置。
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 x 0 0 0 2 0 1 0 0 0 0 0 2 0 1
0 0 0 0 x 4 0 0 0 0 x 0 x 4 0 0
3 0 0 0 0 0 1 0 3 0 0 0 0 0 1 0
贝茜至少要条6步,有以下两种方案
0 0 0 C 0 0 0 0 0 0 0 C 0 0 0 0
0 B 0 0 0 2 0 F 0 0 0 0 0 2 0 F
0 0 0 0 D G 0 0 0 0 B 0 D G 0 0
A 0 0 0 0 0 E 0 A 0 0 0 0 0 E 0
题意:网格图的起点到终点,每次跳马字形,有一些不能跳的点,有一些原来就可以的落脚点,还有一些可以变成落脚点的禁止点,求在把可以变好的禁止点变好最少的所有情况中,起始点到终点的最短路径跳法的方案总数.
输出 最少次数, 最短路径长度,以及方案总数
一道BFS性质的好题
不难想到我们记录一个state 表示到当前这个点最少变几次,在这个基础上的最短路,在每组前两组条件下的方案总数.
然后我一开始一有更新直接入队暴力BFS MLE了.
正解是加一个inq数组,像SPFA一样,在队内直接改,否则入队
一开始觉得这正确性不显然,但我们可以分类讨论一下,证明其正确性
1.当前决策比已记录决策劣,直接跳出,一定正确
2.当前决策比已记录决策优
①:被更新决策在队中,则改了一定正确
②被更新决策在队外 则根据BFS性质我的当前决策优,则被更新决策一定没有入过队,加入即可
3:决策相同
同2②,该决策一定已经入了队,但没有更新其他元素,直接赋值即可
BFS性质优化解题,下次一定要注意
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 55;
const int M = N;
int n , m;
struct state{
int MB , MS;
long long FA;
friend bool operator < (state xxx , state yyy) {
return (xxx.MB == yyy.MB) ? xxx.MS < yyy.MS : xxx.MB < yyy.MB;
}
friend bool operator == (state xxx , state yyy) {
return (xxx.MS == yyy.MS) && (xxx.MB == yyy.MB);
}
friend bool operator > (state xxx , state yyy) {
return yyy < xxx;
}
void init(void) {
MB = MS = FA = 0;
}
}S[N][N];
int dx[] = {1 , -1 , 2 , -2 , 1 , -1 , 2 , -2};
int dy[] = {2 , -2 , 1 , -1 , -2 , 2 , -1 , 1};
int Map[N][N] , sx , sy , tx , ty;
struct Point {
int x , y;
friend bool operator == (Point xxx , Point yyy) {
return (xxx.x == yyy.x) && (xxx.y == yyy.y);
}
}s , t;
queue<Point>q;
bool inq[N][N];
bool isvalid(Point xxx) {
return (xxx.x >= 1) && (xxx.x <= n) && (xxx.y >= 1) && (xxx.y <= m);
}
int main(void) {
scanf("%d%d" , &n ,&m);
for(int i = 1;i <= n;i ++) {
for(int j = 1;j <= m;j ++) {
scanf("%d" , &Map[i][j]);
if(Map[i][j] == 3) {
sx = i; sy = j;
}
else if(Map[i][j] == 4) {
tx = i; ty = j;
}
}
}
s.x = sx; s.y = sy; t.x = tx; t.y = ty;
for(int i = 1;i <= n;i ++) {
for(int j = 1;j <= m;j ++) {
S[i][j].MB = S[i][j].MS = 2e9;
}
}
S[s.x][s.y].MB = 0; S[s.x][s.y].MS = 0; S[s.x][s.y].FA = 1;
inq[s.x][s.y] = 1; q.push(s);
while(!q.empty()) {
Point Ac = q.front(); q.pop(); inq[Ac.x][Ac.y] = 0;
for(int i = 0;i < 8;i ++) {
Point cur = Ac; state dance = S[Ac.x][Ac.y];
cur.x += dx[i]; cur.y += dy[i];
if(!isvalid(cur) || Map[cur.x][cur.y] == 2) continue;
dance.MS ++; if(!Map[cur.x][cur.y]) dance.MB ++;
if(dance > S[cur.x][cur.y]) continue;
if(dance < S[cur.x][cur.y]) {
S[cur.x][cur.y] = dance;
if(!inq[cur.x][cur.y]) {
q.push(cur); inq[cur.x][cur.y] = 1;
}
}
else if(dance == S[cur.x][cur.y]) {
S[cur.x][cur.y].FA += dance.FA;
//BFS's xingzhi difficult
}
}
}
if(S[tx][ty].MB >= 1e6) {
puts("-1"); return 0;
}
printf("%d\n%d\n%lld\n" , S[tx][ty].MB , S[tx][ty].MS , S[tx][ty].FA);
}