亲爱的小伙伴们,我是Tina表姐,毕业于中国人民大学,对数学建模的热爱让我在这一领域深耕多年。我的建模思路已经帮助了百余位学习者和参赛者在数学建模的道路上取得了显著的进步和成就。现在,我将这份宝贵的经验和知识凝练成一份全面的解题思路与代码论文集合,专为本次赛题设计,旨在帮助您深入理解数学建模的每一个环节。
今天就来给大家好好剖析一下 2025 年 Mathorcup 数学建模竞赛的题目,希望能帮到你们在选题时做出更明智的决策哦!
本次Mathorcup 数学建模竞赛(4题)完整内容均可以在文章末尾领取!
题目难度与开放度评级
先给大家呈现一下我根据题目特点做的一个大致评级,方便大家快速有个整体印象:
-
难度 :A > B > C > D
-
开放度 :B > C > A > D
接下来,我就逐题来展开讲讲咯!
A 题:汽车风阻预测
这道 A 题可是聚焦在科学机器学习(SciML)里的算子学习领域呢,任务是借助深度学习模型来预测不同三维车辆几何形状下的空气阻力情况。想象一下,传统用 CFD 仿真计算风阻,那得耗费多少时间呀,要是能构建出端到端的算子网络,实现秒级预测,那效率得多高,而且重点是还得保证模型在面对几何拓扑发生变化时也能有不错的泛化能力,这可就涉及到微分方程求解、高维数据建模以及泛化性优化等诸多交叉学科的难点问题了。
建模过程与推荐算法
-
物理信息神经网络(PINN) :把 Navier-Stokes 方程当成软约束融入到损失函数里,这样一来,模型预测的时候就能更契合物理规律,提升预测结果的可靠性。
-
傅里叶神经算子(FNO) :它能在频域里对高维物理场数据进行压缩,大大降低计算复杂度,而且对于周期性边界问题特别适用,2020 年刚提出来的时候就引起了不小的关注。
-
KAN(Kolmogorov-Arnold Network) :这是 2024 年新提出的可解释神经网络,通过样条函数去逼近复杂的算子,对于提升模型在不同几何形状下的泛化性很有帮助。
选题建议
要是你本身物理学、数学基础挺扎实,那这道题对你来说是个不错的选择。它需要你把科学计算和深度学习紧密结合起来,不过数据预处理方面,尤其是 3D 几何数据这块,可能会成为你们团队遇到的一个瓶颈。这道题可能有最优解,最后大家可以在网上对对答案,答案的准确性对竞赛结果影响还挺大的,适合那些理论功底深厚,愿意在复杂模型构建上花心思的团队。
B 题:老城搬迁规划
B 题是比较传统的建模类题目啦,核心任务是设计出合理的居民平移置换策略,目标是在满足诸如面积、采光等补偿约束的前提下,最大化腾空整院的经济效益。这本质上是个多目标组合优化问题,属于 NP-Hard 问题,难就难在地块之间有着复杂的拓扑关系,比如朝向、面积分布各不相同,而且搬迁顺序还会影响后续的选择,这就使得决策过程变得很动态。
建模过程与推荐算法
-
图注意力网络(GAT) :能动态分配地块之间的权重,帮助识别出关键的腾挪路径,这对于优化搬迁策略很有意义。
-
深度强化学习(PPO) :把搬迁决策过程建模成一个马尔可夫过程,通过这种方式来优化长期收益,让搬迁规划在经济和社会效益上都能达到较好的平衡。
-
扩散模型(Diffusion Models) :可以生成满足各种约束条件的搬迁方案分布,从而提升方案的多样性,毕竟 2022 年这可是热门的生成模型呢。
选题建议
要是你是管理科学、运筹学相关专业的同学,那这道题很适合你。它的开放度挺高的,但难度也不小,需要你们团队在社会因素和经济目标之间好好权衡,要是有复杂系统建模经验,那在这道题上就能大展身手,说不定能做出很出彩的成果。
C 题:音频文件的高质量读写与去噪优化
C 题关注的是音频编码参数优化以及噪声去除问题,关键在于要平衡好存储效率和音质保真度,同时还得设计出自适应的去噪算法。这里面的难点可不少,比如多目标指标设计,既要考虑文件大小,又要兼顾音质损失和计算复杂度,还有噪声特征提取,毕竟时频域非平稳信号的噪声特征提取本身就挺复杂的,再加上要让算法在不同场景下都能有良好的泛化能力,难度又上了一个台阶。
建模过程与推荐算法
-
神经音频编码器(Neural Audio Codec) :像谷歌 2021 年提出的 SoundStream,就能联合优化压缩和重建质量,对于提升音频文件的整体处理效果很有帮助。
-
时频域 Transformer :利用 Swin Transformer 去处理频谱图,能够很好地捕捉长程依赖关系,这对于音频信号的处理来说很关键。
-
扩散去噪(Diffusion Clustering) :在潜空间里进行迭代去噪,而且还能适应多种不同类型的噪声,这是 2023 年的 SOTA 方法,很适合用在这道题里。
选题建议
这道题目的数据处理环节至关重要,大家一定要认真对待。在开始之前,先对数据进行分析和数值化处理,也就是做 EDA(探索性数据分析),还可以运用一些常见的可视化方法,比如直方图和密度图展示数值变量分布,散点图呈现两个连续变量间关系,箱线图查看数值变量分布和异常值,条形图和饼图呈现分类变量分布,折线图展示随时间或顺序变化的趋势,热力图呈现不同变量间相关性,散点矩阵图呈现多个变量间散点图矩阵,要是有地理位置数据的话,地理图也能派上用场。这道题开放度挺高,难度处于适中水平,推荐各个专业的同学都可以考虑,毕竟门槛相对较低,而且开放度也挺不错,只要你们把问题拆解清晰,好好分析数据,说不定就能脱颖而出。
D 题:物流调度优化
D 题的核心任务是预测货量并且优化车辆调度,听起来是不是很贴近实际生活中的物流场景呀。这里面的挑战主要在于时间序列预测,毕竟货量受天气、节假日等多种因素影响,呈现出非线性特点,而且数据维度还挺高,是以 10 分钟为颗粒度的,同时还涉及实时决策,比如外部车辆的调用,这些都使得问题变得复杂起来。
建模过程与推荐算法
-
时空特征提取 :把历史货量、已知数据以及时间戳(像小时、工作日等)编码成张量,方便后续建模。
-
多模态融合预测 :用 Temporal Fusion Transformer(TFT,谷歌 2020 年提出的)联合建模时序依赖和外生变量,提升预测准确性。
-
时间序列 Transformer(Informer) :通过 ProbSparse 自注意力机制降低计算复杂度,特别适合长期预测。
-
图卷积网络(GCN) :建模站点之间货量的关联情况,从而提升货量预测的精度。
-
深度强化学习(DRL) :把车辆调度问题建模成车辆路径问题(VRP),然后用 PPO 去优化周转率,让车辆调度更高效。
选题建议
这道题目标和约束都很明确,路径相对固定,对于那些喜欢按部就班解决问题,不太想在过于复杂的模型创新上花费太多精力的团队来说是个不错的选择,只要你们能把时间序列预测和车辆调度的常规方法掌握好,做出一个靠谱的模型,拿个不错的成绩还是很有希望的。
好啦,以上就是我对 2025 年 Mathorcup 数学建模竞赛各题目的分析啦,希望能帮到你们。要是你们还想了解更多详细的思路、代码实现、讲解视频、成ping论文等内容,可以关注我后续的更新哦,祝大家竞赛都能取得理想的成绩!
更多内容具体可以看看我的下方名片!
里面包含有本次竞赛一手资料与分析!
另外在赛中,我们也会陪大家一起解析建模比赛
记得关注Tina表姐哦~