本文主要依据 TI 的《Understanding the Terms and Definitions of LDO Voltage Regulators》一文翻译过来。如有错误,欢迎指正。
目录
1. Dropout Voltage
跌落电压是指为了保证 LDO 正常工作,输入和输出之间的最小压差。
[!Info]
文章里面给出的定义是:
Dropout voltage is the input-to-output differential voltage at which the circuit ceases to regulate against further reductions in input voltage;this point occurs when the input voltage approaches the output voltage.
(压差电压是输入到输出的差分电压,当输入电压进一步降低时,电路将停止调节。该现象通常出现在当输入电压接近输出电压的时候);
以 PMOS 型 LDO 为例,当 PMOS 调整管正常工作时,其表现为一个压控可变电阻
R
o
n
R_{on}
Ron。此时跌落电压的值就是
V
d
r
o
p
o
u
t
=
I
0
R
o
n
V_{\mathrm{dropout}}=I_{0}R_{\mathrm{on}}
Vdropout=I0Ron
文章里面用 TPS 76733 举例,该 LDO 的稳压输出在 3.3 V,跌落电压为 350 mV。所以当输入电压低于 3.65 V 时,LDO 的输出就变得异常。
需要注意的是,LDO 的跌落电压通常是在输出满载(即特定输出电流)的情况下测得的。LDO几个重要参数 - 知乎 (zhihu.com)
2. Quiescent Current
静态电流也叫接地电流。是 LDO 输入和输出电流之差。
如图所示,静态电流
I
q
=
I
i
−
I
0
I_{\mathfrak{q}}=I_{\mathfrak{i}}-I_0
Iq=Ii−I0 。静态电流包括偏置电流(如带隙基准、取样电阻和误差放大器电流)和串联通路元件的栅极驱动电流(有的话),它们对输出功率没有贡献(而是被自身消耗掉了)。静态电流值主要由串联通路元件、拓扑结构、环境温度等因素决定。
对于双极晶体管(BJT),静态电流与输出电流成比例增加,因为串联通过元件是电流驱动器件。此外,由于双极晶体管的发射极和基极之间存在额外的寄生电流路径,基极电压低于输出电压,因此在压降区域,静态电流会增加。对于 MOS 晶体管,由于该器件是电压驱动型器件,因此静态电流与负载电流相比几乎是一个恒定值。MOS 晶体管的静态电流主要来自带隙、取样电阻和误差放大器的偏置电流。在功耗要求较高或需要偏置电流小于输出电流的应用中,使用 MOS 晶体管的 LDO 稳压器至关重要。
3. Standby Current
待机电流是稳压器在输出电压被关断信号(如果有这个功能的话)禁用时的输入电流。如图 4 所示,LDO 稳压器中的基准和误差放大器在待机模式下不加载。
4. Efficiency
效率即用于衡量LDO 将输入功率转换为输出功率的能力。
Efficiency
=
P
o
P
i
=
I
o
V
o
(
I
o
+
I
q
)
V
i
×
100
%
\text{Efficiency}=\frac{P_o}{P_i}=\frac{\mathrm{I_o V_o}}{\left(\mathrm{I_o+I_q}\right)\mathrm{V_i}}\times100\%
Efficiency=PiPo=(Io+Iq)ViIoVo×100% 。
要实现高效率,必须尽量降低压降和静态电流。此外,输入和输出之间的电压差也必须最小,因为 LDO 稳压器的功率耗散会影响效率。(
P
o
w
e
r
D
i
s
s
i
p
a
t
i
o
n
=
(
V
i
−
V
o
)
I
o
Power Dissipation = (Vi - Vo) Io
PowerDissipation=(Vi−Vo)Io )。输入/输出电压差是决定效率的内在因素,与负载条件无关。
以 TPS 76933 3.3-V LDO 为例。假设输出电流的范围为 80 mA 至 100 mA,则当输入电压范围分别为 3.6 V-4.5 V 和 3.6 V-4 V 时,LDO 的效率分别为:
Efficiency1
=
100
m
A
⋅
3.3
V
(
100
m
A
+
17
μ
A
)
4.5
V
×
100
=
73.3
%
\text{Efficiency1 }=\frac{100\mathrm{~mA~}\cdot3.3\mathrm{~V}}{(100\mathrm{~mA~}+17\mathrm{~\mu A})4.5\mathrm{~V}}\times100=73.3\%
Efficiency1 =(100 mA +17 μA)4.5 V100 mA ⋅3.3 V×100=73.3%
Efficiency2
=
100
m
A
⋅
3.3
V
(
100
m
A
+
17
μ
A
)
4
V
×
100
=
82.5
%
\text{Efficiency2 }=\frac{100\mathrm{~mA~}\cdot3.3\mathrm{~V}}{(100\mathrm{~mA~}+17\mathrm{~\mu A})4\mathrm{~V}}\times100=82.5\%
Efficiency2 =(100 mA +17 μA)4 V100 mA ⋅3.3 V×100=82.5%
显然,减低输入电压可以提高效率,而输入电压最小能降到输出加上跌落电压。
5. Transient Response
瞬态响应是指负载电流阶跃变化时,LDO允许的最大输出电压变化。
瞬态响应是输出电容器值 (Co)、输出电容器等效串联电阻 (ESR)、旁路电容器 (Cb) 和最大负载电流 (Io, max) 的函数。
Δ
V
t
r
,
m
a
x
=
I
0
,
m
a
x
C
0
+
C
b
Δ
t
1
+
Δ
V
E
S
R
\Delta\mathrm{V_{tr,max}}=\frac{\mathrm{I_{0,max}}}{\mathrm{C_0+C_b}}\Delta\mathrm{t_1}+\Delta\mathrm{V_{ESR}}
ΔVtr,max=C0+CbI0,maxΔt1+ΔVESR
这个公式中的 Δ t 1 \Delta\mathrm{t_1} Δt1有点抽象。我的理解是,使用LDO的时候,是希望LDO的输出越稳定越好。因此,瞬态响应这个参数是越小越好。对应到这个公式当中就是希望 Δ t 1 \Delta\mathrm{t_1} Δt1越小越好。
对应到原文中就是建议选用的LDO的带宽较高。带宽低,信号高频(快速)变化的能力就弱,带宽高,信号高频变化的能力就强(这儿的信号对应的就是LDO的输出电压)。
图 5 显示了输出电容为 4.7 μF 的 1.2 V、100 mA LDO 稳压器的瞬态响应。对稳压器施加了阶跃变化的负载电流(接近 90 mA),如图中上部所示。在下图中,输出电压下降了约 120 mV,然后 LDO 稳压器的电压控制环路开始在 1 us(Δt 1 = 1 μs)内对阶跃负载变化做出响应。LDO 稳压器的频率带宽占 Δt 1。最后,输出电压在 17 μs 内达到稳定状态。
为了获得更好的瞬态响应,建议使用带宽较高(更快响应)的 LDO 稳压器、较高值的输出/旁路电容器和较低的 ESR 值(前提是满足 CSR 要求 )。
6.Line Regulation
线路调节是衡量电路在输入电压变化时保持指定输出电压的能力。
L
i
n
e
r
e
g
u
l
a
t
i
o
n
=
Δ
V
o
Δ
V
i
Line \ regulation=\frac{\Delta V_o}{\Delta V_i}
Line regulation=ΔViΔVo
图 6 显示了 TPS 76933 3.3 V LDO 稳压器的输入电压瞬态响应。输入电压的阶跃变化被施加到稳压器上,如图中左下方所示。结果输出电压因输入电压的不同而发生变化,如图右侧所示。线路调节由 ∆VLR 1 和 ∆VLR 2 决定,因为线路调节是一个稳态参数(即忽略所有频率分量)。
图 7 显示了 TPS 76933 LDO 稳压器的电路性能与输入电压的关系。折线表示输入电压变化导致的输出电压变化范围 (∆VLR) 。提高开环增益可改善线路调节。
[!info]
需要注意的是现在的 LDO手册上,该指标的单位通常是%/V 或者 ppm/V。这表示输入电压变化引起的输出电压变化的百分比。因此实际的值应该是 V o ⋅ L i n e R e g u l a t i o n ( % / V 或者 p p m / V ) V_o \cdot Line\ Regulation \left( \%/V 或者 ppm/V \right) Vo⋅Line Regulation(%/V或者ppm/V) 。
7. Load Regulation
负载调节是衡量电路在不同负载条件下保持指定输出电压的能力。
L
i
n
e
r
e
g
u
l
a
t
i
o
n
=
Δ
V
o
Δ
I
o
Line \ regulation=\frac{\Delta V_o}{\Delta I_o}
Line regulation=ΔIoΔVo
输出电压变化的最坏情况发生在负载电流从零过渡到最大额定值时,反之亦然,如图 8 所示。负载调节由 ∆VLDR 决定,因为负载调节与线路调节一样是一个稳态参数。
图 9 显示了 TPS 76350 5 V LDO 稳压器在输出电流方面的电路性能。提高开环增益可改善负载调节。
[!info]
和线性调整率类似,该指标的单位通常是%/mA 或者 ppm/mA。这表示输处电流变化引起的输出电压变化的百分比。因此实际的值应该是 V o ⋅ L o a d R e g u l a t i o n ( % / m A 或者 p p m / m A ) V_o \cdot Load\ Regulation \left( \%/mA 或者 ppm/mA \right) Vo⋅Load Regulation(%/mA或者ppm/mA) 。该值具有电阻的量纲,因此有时候也称为输出阻抗。精密逐次逼近型ADC基准电压源设计 | Analog Devices
8. Power Supply Rejection
电源抑制比 (PSRR) 也称为纹波抑制,用于衡量 LDO 稳压器防止输入电压变化导致调节输出电压波动的能力。除了考虑整个频谱外,线路调节的关系同样适用于 PSRR。
P
S
R
R
=
V
o
,
r
i
p
p
l
e
V
i
,
r
i
p
p
l
e
a
t
a
l
l
f
r
e
q
u
e
n
c
i
e
s
\mathrm{PSRR~=~\frac{V_{o,ripple}}{V_{i,ripple}}~at~all~frequencies}
PSRR = Vi,rippleVo,ripple at all frequencies
例如,在使用直流/直流开关模式电源 (SMPS) 的输出为线性稳压器供电的应用中,100 kHz 至 1 MHz 频段的电源抑制尤为重要。SMPS 的输出纹波通常在上述频率范围内。因此,上图似乎并未显示 SMPS 应用在频率范围(100 kHz 至 1 MHz)内具有良好的 PSRR 性能。最差的性能(图中的最大点)出现在 RESR 较大、Cb 较低的情况下。
控制环路往往是造成电源抑制的主要因素。低 ESR 值、大输出电容和添加的旁路电容可改善 PSRR 性能,但前提是它们必须满足 CSR 要求。
[!info]
需要注意,目前手册都是用 dB 来衡量 PSRR,此时 P S R R = 20 l o g V i , r i p p l e V o , r i p p l e ( d B ) PSRR = 20log\frac{V_{i,ripple}}{V_{o,ripple}} (dB) PSRR=20logVo,rippleVi,ripple(dB)
9. Output Noise Voltage
输出噪声电压是指在恒定输出电流和无纹波输入电压条件下,一定频率范围(10 Hz 至 100 kHz)内输出噪声电压的有效值。仅由 LDO 稳压器产生的噪声即为输出噪声电压。
大部分输出噪声由内部电压基准引起。输出噪声电压的典型规格范围为 100 至 500 μV。TI-TPS 764 xx 器件有一个外部补偿引脚,客户可以连接一个旁路电容器来降低输出噪声。旁路电容器与内部电阻器配合,可形成低通滤波器,进一步降低噪声。使用 0.01 μF 旁路电容器和 4.7 μF 输出电容器时,TI-TPS 764 xx 的输出电压噪声仅为 50 μV。
10. Instability of LDO Regulator
LDO 制造商通常会提供一张图表,显示补偿串联电阻 Compensation Series Resistance (CSR) 值的稳定范围,因为 CSR 会导致输出电流不稳定。CSR 是输出电容和附加电阻 (Radd) 的等效串联电阻 (RESR) 之和。
C
S
R
=
R
E
S
R
+
R
a
d
d
\mathrm{CSR}=\mathrm{R}_{\mathrm{ESR}}+\mathrm{R}_{\mathrm{add}}
CSR=RESR+Radd
如果 RESR 太小,可以使用额外的电阻器。图 12 显示了 CSR 典型稳定值范围的示例。这条曲线被称为死亡隧道。该曲线表明,CSR 必须介于 0.2 Ω 和 9 Ω 之间,这样 LDO 稳压器才能保持稳定。固态钽电解、铝电解和多层陶瓷电容器只要符合 CSR 要求,都是合适的选择。
[!info]
严重怀疑该参数已经没有实际意义,或者已经被整合到了其它参数中,找了好几个较新LDO 的手册都没有该参数的说明。
11. Accuracy
总体精度考虑了线路调节(∆VLR)、负载调节(∆VLDR)、基准电压漂移(∆Vo, ref)、误差放大器电压漂移(∆Vo, a)、外部采样电阻器容差(∆Vo, r)和温度系数(∆VTC)的影响。
A
c
c
u
r
a
c
y
≈
∣
Δ
V
L
R
∣
+
∣
Δ
V
L
D
R
∣
+
Δ
V
o
,
r
e
f
2
+
Δ
V
o
,
a
2
+
Δ
V
o
,
r
2
+
Δ
V
T
C
2
V
0
×
100
%
\mathrm{Accuracy}\approx\frac{\left|\Delta\mathrm{V}_{{\mathrm{LR}}}\right|+\left|\Delta\mathrm{V}_{{\mathrm{LDR}}}\right|+\sqrt{\Delta\mathrm{V}_{{\mathrm{o,ref}}}^{2}+\Delta\mathrm{V}_{{\mathrm{o,a}}}^{2}+\Delta\mathrm{V}_{{\mathrm{o,r}}}^{2}+\Delta\mathrm{V}_{{\mathrm{TC}}}^{2}}}{\mathrm{V}_{0}}\times100\%
Accuracy≈V0∣ΔVLR∣+∣ΔVLDR∣+ΔVo,ref2+ΔVo,a2+ΔVo,r2+ΔVTC2×100%
稳压电源的输出电压变化主要是由于恒压基准源的温度变化、差分放大器特性的温度变化以及取样电阻器的容差造成的。负载调节、线路调节、增益误差和偏移通常占总体精度的 1% 至 3%。
图 13 所示的 3.3 V LDO 稳压器在 0° 至 125° 的温度跨度内具有以下工作特性:温度系数为 100 ppm/°C,取样电阻公差为 0.25%,负载调节和线路调节导致的输出电压变化分别为 ±5 mV 和 ±10 mV。基准精度为 1%。
V
0
=
R
+
R
R
V
r
e
f
=
2
V
r
e
f
\mathrm{V_0}=\frac{\mathrm{R}+\mathrm{R}}{\mathrm{R}}\mathrm{V_{ref}}=2\mathrm{V_{ref}}
V0=RR+RVref=2Vref
因此,参考电压 Vref 是输出电压的一半(即 Vref = 3.3/2[V]),并且
Δ
V
T
C
=
Temperature Coefficient
⋅
(
T
max
−
T
min
)
⋅
V
O
=
(
100
p
p
m
/
∘
C
)
(
12
5
∘
C
)
(
3.3
V
)
=
41.2
m
V
\begin{gathered}\Delta\mathrm{V}_{\mathrm{TC}} =\text{Temperature Coefficient}\cdot\left (\mathrm{T}_{\max}-\mathrm{T}_{\min}\right)\cdot\mathrm{V}_{\mathbf{O}} \\=(100\mathrm{ppm/}^\circ\mathrm{C})(125^\circ\mathrm{C})(3.3\mathrm{~V})=41.2\mathrm{~mV} \end{gathered}
ΔVTC=Temperature Coefficient⋅(Tmax−Tmin)⋅VO=(100ppm/∘C)(125∘C)(3.3 V)=41.2 mV
Δ
V
0
,
r
=
(
0.25
%
of V
0
+
0.25
%
of V
0
)
V
ref
=
(
0.005
)
(
3.3
)
(
3.3
2
)
=
27
mV
\Delta V_{0,r}=\begin{pmatrix}0.25\%&\text{of V}_0+0.25\%&\text{of V}_0\end{pmatrix}V_{\text{ref}}\\= (0.005)(3.3)\biggl(\frac{3.3}{2}\biggr) = 27 \text{mV}
ΔV0,r=(0.25%of V0+0.25%of V0)Vref=(0.005)(3.3)(23.3)=27mV
Δ
V
o
,
r
e
f
=
2
R
R
V
d
=
2
(
3.3
2
)
0.01
=
33
m
V
,
w
h
e
r
e
V
d
=
V
r
e
f
×
0.01
=
(
3.3
2
)
×
0.01
\Delta\mathrm{V}_{\mathrm{o,ref}}=\frac{2\mathrm{R}}{\mathrm{R}}\mathrm{V}_{\mathrm{d}}=2\biggl(\frac{3.3}{2}\biggr)0.01 = 33\mathrm{m}\mathrm{V}, \mathrm{where} \mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{ref}}\times0.01 = \biggl(\frac{3.3}{2}\biggr)\times0.01
ΔVo,ref=R2RVd=2(23.3)0.01=33mV,whereVd=Vref×0.01=(23.3)×0.01
因此,该 LDO 的总精度为
A
c
c
u
r
a
c
y
≈
10
m
V
+
5
m
V
+
(
33
m
V
)
2
+
(
27
m
V
)
2
+
(
41.2
m
V
)
2
3.3
V
×
100
≈
2.25
%
\mathrm{Accuracy}\approx\frac{10\mathrm{mV}+5\mathrm{mV}+\sqrt{\left(33\mathrm{mV}\right)^2+\left(27\mathrm{mV}\right)^2+\left(41.2\mathrm{mV}\right)^2}}{3.3\mathrm{V}}\times100\approx2.25\%
Accuracy≈3.3V10mV+5mV+(33mV)2+(27mV)2+(41.2mV)2×100≈2.25%
12 .Power Dissipation and Junction Temperature
大多数 LDO 稳压器都规定了结温,以确保其正常工作;同时还规定了在不损坏器件的情况下允许的最高结温。这一限制限定了稳压器在任何特定应用中可以处理的功率耗散。为确保结温在可接受的范围内,请计算最大允许耗散
P
D
(
m
a
x
)
P_{D(max)}
PD(max) 和实际耗散
P
D
P_{D}
PD,后者必须小于或等于
P
D
(
m
a
x
)
P_{D(max)}
PD(max)。
最大功率耗散限制
P
D
(
m
a
x
)
P_{D(max)}
PD(max) 可通过以下公式确定;
P
D
(
max
)
=
T
J
m
a
x
−
T
A
R
θ
J
A
\mathsf{P}_{\mathsf{D}(\max)}=\frac{\mathsf{T}_{\mathsf{Jmax}}-\mathsf{T}_{\mathsf{A}}}{\mathsf{R}_{\mathsf{\theta JA}}}
PD(max)=RθJATJmax−TA
- TJmax 是最大允许结温。
- RθJA 是封装的结-环境热阻,即 5 端子 SOT 23 的 285°C/W。
- TA 是环境温度。
调节器功率耗散 P D P_{D} PD 的计算公式为
P D = ( V i − V o ) × I o \mathrm{P_D}=\begin{pmatrix}\mathrm{V_i}-\mathrm{V_o}\end{pmatrix}\times\mathrm{I_o} PD=(Vi−Vo)×Io
[!info]
结温是处于电子设备中实际半导体芯片(晶圆、裸片)的最高温度。它通常高于外壳温度和器件表面温度。
T J = T A + ( R θ J A × P o w e r ) \mathrm{T_J=T_A+\left(R_{\theta JA}\times Power\right)} TJ=TA+(RθJA×Power)