基于 snowNLP的微博评论数据情感分析

本文介绍了如何利用snowNLP库对网友评论数据进行情感分析,将评论分为正面和负面两类,并分别保存到good.txt和bad.txt文件中。通过可视化展示,结果显示了情感倾向的两极分化现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       在我之前的文章里面关于文本分析的内容也有很多,主要是讲解从头实践文本分析的流程,但是实际生活中有一些已经做得很完善的库可以很方便地直接去使用还是值得学习实践以下的。

       今天主要就是使用snowNLP做一下网友们评论数据的情感分析。

       数据内容样例如下所示:

因内容限制无法上传

         基于snowNLP的分析代码很简洁,如下所示:

def analysis(texts):
    for comm in texts:
        text=dataClean(comm)
        socre = SnowNLP(text)
        if socre.sentiments > 0.6:
            with open('good.txt', mode='a', encoding='utf-8') as g:
                g.writelines(comm +"\n")
        elif socre.sentiments < 0.4:
            with open('bad.txt', mode='a', encoding='utf-8') as f:
                f.writelines(comm + "\n")
        else:
            pass

       接下来我们分别看下good.txt和bad.txt的数据内容样例。

       good.txt内容样例如下所示:

因内容限制无法上传

      bad.txt内容样例如下所示:

因内容限制无法上传

      为了更加直观地看出来大家对于该话题的情感倾向性,这里对其得分进行了可视化展示,如下所示:

       从结果来看,两极分化还是比较明显的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值