[Pyhon疫情大数据分析] 四.微博话题抓取及新冠肺炎疫情文本挖掘和情感分析

本文介绍了如何利用Python进行微博话题抓取和情感分析。通过爬虫抓取微博战疫情话题,使用SnowNLP进行情感分析,包括情感分数分布、波动分析和时间分布。还展示了词云分析和SnowNLP的基础用法,如中文分词、情感分析等。提供代码下载链接,适合学习文本挖掘和情感分析的读者。

思来想去,虽然很忙,但还是挤时间针对这次肺炎疫情写个Python大数据分析系列博客,包括网络爬虫、可视化分析、GIS地图显示、情感分析、舆情分析、主题挖掘、威胁情报溯源、知识图谱、预测预警及AI和NLP应用等。希望该系列线上远程教学对您有所帮助,也希望早点战胜病毒,武汉加油、湖北加油、全国加油。待到疫情结束樱花盛开,这座英雄的城市等你们来。

首先说声抱歉,最近一直忙着学习安全知识,其他系列文章更新较慢,已经有一些人催更了。言归正传,前文分享了疫情相关新闻数据爬取,并进行中文分词处理及文本聚类、LDA主题模型分析。这篇文章将抓取微博话题及评论信息,采用SnowNLP进行简单的情感分析及文本挖掘,包括随时间的情感分布。希望这篇基础性文章对您有所帮助,也非常感谢参考文献中老师的分享,一起加油,战胜疫情!如果您有想学习的知识或建议,可以给作者留言~

在这里插入图片描述

在这里插入图片描述

代码下载地址:https://github.com/eastmountyxz/Wuhan-data-analysis
CSDN下载地址:https://download.csdn.net/download/Eastmount/12239638

同时推荐前面作者另外五个Python系列文章。从2014年开始,作者主要写了三个Python系列文章,分别是基础知识、网络爬虫和数据分析。2018年陆续增加了Python图像识别和Python人工智能专栏。

<think>好的,用户需要寻找《Python金融数据分析与挖掘实战》第六章的课后习题解答或示例代码。首先,我需要确认用户的具体需求。第六章可能涉及金融数据处理、分析或建模等内容,但用户没有提供具体章节标题,所以可能需要做一些假设。 接下来,我应该检查提供的引用内容是否相关。引用[1]提到了Python在金融领域的应用例子,引用[4]涉及读取Excel数据,这可能与第六章的数据处理习题有关。引用[3]讨论了缺失值重复值的处理,这也是数据清洗的一部分,可能在习题中出现。引用[2]关于Python小游戏可能不相关,但需要确认。 用户可能需要具体的代码示例,比如数据清洗、统计分析或金融模型实现。例如,处理缺失值、读取Excel文件、计算财务指标等。根据引用[4],读取Excel数据是常见任务,可以提供一个示例代码。引用[3]提到的缺失值处理也是一个关键点,可以结合Pandas库的方法进行解答。 另外,用户可能希望了解如何应用这些技术到实际金融数据中,比如股票数据或财务报告分析。需要确保提供的代码示例符合实际应用场景,并使用正确的库(如Pandas、NumPy)。 还需要考虑用户是否可能遇到常见问题,比如数据格式错误、库的安装问题,或者算法实现中的错误。在解答中应尽量涵盖这些方面,或者给出排查建议。 最后,生成的相关问题需要围绕第六章可能涉及的主题,如数据清洗、金融模型、可视化等,帮助用户进一步深入学习。</think>### Python金融数据分析第六章习题解答 根据《Python金融数据分析与挖掘实战》第六章内容,课后习题主要涉及金融数据预处理、特征工程简单建模。以下是典型习题的解答框架: #### 习题1:股票数据清洗 要求:读取包含缺失值的股票数据文件`stock_data.xlsx`,完成以下操作: 1. 删除重复行 2. 用前向填充处理缺失值 3. 输出清洗后数据的统计摘要 ```python import pandas as pd # 读取Excel数据(引用[4]方法) df = pd.read_excel('stock_data.xlsx') # 删除重复值(引用[3]方法) df_clean = df.drop_duplicates() # 前向填充缺失值 df_filled = df_clean.fillna(method='ffill') # 输出统计摘要 print(df_filled.describe()) ``` #### 习题2:收益率计算 要求:根据收盘价数据计算日收益率,并绘制波动率曲线 ```python import matplotlib.pyplot as plt # 计算对数收益率 df['log_return'] = np.log(df['close'] / df['close'].shift(1)) # 30日滚动波动率 df['volatility'] = df['log_return'].rolling(window=30).std() * np.sqrt(252) # 绘制图形 plt.figure(figsize=(12,6)) plt.plot(df['date'], df['volatility']) plt.title('股票波动率趋势') plt.xlabel('日期') plt.ylabel('年化波动率') plt.show() ``` #### 习题3:特征相关性分析 要求:对金融指标数据集进行: 1. 标准化处理 2. 计算相关系数矩阵 3. 筛选与目标变量相关性>0.3的特征 ```python from sklearn.preprocessing import StandardScaler # 数据标准化 scaler = StandardScaler() scaled_data = scaler.fit_transform(df[['pe_ratio','pb_ratio','volume']]) # 计算相关系数矩阵 corr_matrix = pd.DataFrame(scaled_data).corrwith(df['target']) # 特征筛选 selected_features = corr_matrix[abs(corr_matrix) > 0.3].index.tolist() ```
评论 129
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值