基于YOLOV5实现包装箱纸板破损缺陷检测

文章介绍了利用目标检测模型YOLV5s来构建破损缺陷纸板检测系统的方法。通过训练数据集,特别是VOC和YOLO格式的标注数据,对模型进行训练,并展示了训练过程的日志、结果目录以及推理可视化,实现了对纸板破损的自动识别功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

纸板对于我们来说再熟悉不过了,基本上每天都要与各种类型的纸板打交道,尤其是节日的时候,各种快递各种纸盒的拆个不停,纸箱的纸板在生产、制造、运输等等各个环节容易出现破损等问题,想要基于AI技术自动实现破损缺陷纸板的及时自动发现还是很有必要的。本文主要就是想尝试基于目标检测模型的方式来尝试构建破损缺陷问题检测模型,首先看下效果图:

同样,这里沿用的是经典的轻量级yolov5s模型,对应的yaml文件如下:

#Parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

#Backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

#Head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

这里待检测的目标对象只有一类就是破损缺陷,任何纸板表面的破损、抓痕、撕裂等均属于待检测的问题对象。

简单看下这里拍摄到的数据:

VOC格式的标注数据集:

YOLO格式的标注数据集:

默认执行100次的epoch计算,日志输出如下所示:

训练完成结果数据目录如下所示:

可视化推理如下:

上传图像:

推理检测:

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值