助力不文明行文识别,基于YOLOv7融合RepVGG的遛狗牵绳行为检测识别分析系统

文章介绍了基于YOLOv7构建的不文明行为检测系统,特别是针对遛狗不牵绳的行为进行自动化识别。数据集包含了YOLO和VOC格式的标注信息,通过RepVGG增强模型性能,展示了训练过程和评估指标,如F1曲线、PR曲线和混淆矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不知道大家平时在路上走的时候或者在小区的时候有没有遇上过遛狗不牵绳子的行为,我在实际生活里面可是没少遇到过,有时候特别大的一只狗就这么冲过来,主人却还无动于衷,揍他的心都有了,这种行为的确是很不文明,希望都能互相理解遵守文明生活规则。

闲话就说这么多了,本文主要是基于yolov7来构建不文明行为检测识别分析系统,以期来自动化地检测识别遛狗未牵绳子的不文明行为,首先看下效果图:

接下来看下数据集情况:

YOLO格式标注数据如下:

实例标注内容如下:

0 0.524194 0.843548 0.248387 0.306452
0 0.616129 0.040323 0.077419 0.080645
1 0.783871 0.340323 0.4 0.674194
1 0.31129 0.332258 0.622581 0.6
0 0.232258 0.08871 0.219355 0.170968

VOC格式标注数据如下:

实例标注内容如下:

<?xml version='1.0' encoding='UTF-8'?>
<annotation>
  <filename>5d21afa0-1a30-489d-8e2c-5af9cdb88a52.jpg</filename>
  <object_num>8</object_num>
  <size>
    <width>1000</width>
    <height>750</height>
  </size>
  <object>
    <name>DOG</name>
    <difficult>0</difficult>
    <bndbox>
      <xmin>235</xmin>
      <ymin>543</ymin>
      <xmax>355</xmax>
      <ymax>724</ymax>
    </bndbox>
  </object>
  <object>
    <name>ROPE</name>
    <difficult>0</difficult>
    <bndbox>
      <xmin>403</xmin>
      <ymin>85</ymin>
      <xmax>596</xmax>
      <ymax>724</ymax>
    </bndbox>
  </object>
  <object>
    <name>DOG</name>
    <difficult>0</difficult>
    <bndbox>
      <xmin>689</xmin>
      <ymin>494</ymin>
      <xmax>875</xmax>
      <ymax>705</ymax>
    </bndbox>
  </object>
  <object>
    <name>DOG</name>
    <difficult>0</difficult>
    <bndbox>
      <xmin>561</xmin>
      <ymin>471</ymin>
      <xmax>719</xmax>
      <ymax>656</ymax>
    </bndbox>
  </object>
  <object>
    <name>ROPE</name>
    <difficult>0</difficult>
    <bndbox>
      <xmin>410</xmin>
      <ymin>126</ymin>
      <xmax>572</xmax>
      <ymax>422</ymax>
    </bndbox>
  </object>
  <object>
    <name>DOG</name>
    <difficult>0</difficult>
    <bndbox>
      <xmin>121</xmin>
      <ymin>543</ymin>
      <xmax>271</xmax>
      <ymax>724</ymax>
    </bndbox>
  </object>
  <object>
    <name>DOG</name>
    <difficult>0</difficult>
    <bndbox>
      <xmin>383</xmin>
      <ymin>538</ymin>
      <xmax>482</xmax>
      <ymax>731</ymax>
    </bndbox>
  </object>
  <object>
    <name>DOG</name>
    <difficult>0</difficult>
    <bndbox>
      <xmin>563</xmin>
      <ymin>479</ymin>
      <xmax>841</xmax>
      <ymax>697</ymax>
    </bndbox>
  </object>
</annotation>

关于融合RepVGG的可以参考我前面的文章:

《基于轻量级YOLOV5融合RepVGG的电梯内电动车检测识别分析系统》

本质思想都是一样的,这里就简单看下了:

BackBone加入RepVGGBlock

Head加入RepConv

默认100次epoch迭代计算,结果详情如下:

LABEL可视化:

batch检测实例:

训练可视化:

F1曲线:

PR曲线:

混淆矩阵:

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值