布匹瑕疵检测实践大全,基于yolov5全系列模型[n/s/m/l/x]开发构建布匹瑕疵检测模型,对比分析各个模型性能差异

本文通过对YOLOv5n,yolov5s,yolov5m,yolov5l,yolov5x等不同规模模型的训练和测试,展示了在布匹瑕疵检测任务中各模型的性能差异。从F1值、Precision、Recall和loss曲线的对比中,可以看出yolov5x显示出显著的性能优势,但其较大的计算需求和训练成本意味着在实际应用中需权衡精度与效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

布匹瑕疵检测在我之前的文章中已经有过实践记录了,这里就不在赘述了,本文的核心目标是为了基于yolov5全系列的各个模块分别开发构建布匹瑕疵检测模型,之后通过对比分析结果数据来分析不同模块之间的差异。

首先看下效果图:

简单看下数据集:

 YOLO格式标注文件如下:

 VOC格式标注文件如下:

 随机划分数据集,五款模型保持在完全相同的条件下进行实验,默认都是100次epoch计算,接下来看结果:

【yolov5n】

 【yolov5s】

【yolov5m】

 【yolov5l】

 【yolov5x】

 肉眼可见的性能提升,从n系列开始到m系列的变化比较明显,之后就比较缓慢了,很少用x这种这么大的模型,因为训练成本是很大的。

接下来,我们来直观地进行模型间的对比,绘制各种曲线。

首先是F1值曲线:

 接下来是Precision曲线:

 之后是Recall曲线:

 最后是loss曲线:

 不难看出:x模型在性能上是独一档的存在,不过大模型大参数也有缺点,最直接的就是时耗较大,对设备算力要求较高,这个在实际生产场景中还是选择最适合自己业务需求的模型即可,不需要一味地追求高精度或者是高速度。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值