基于轻量级卷积神经网络模型开发构建中国象棋棋子识别系统

关于棋类相关的AI类型的项目在我之前的文章中也有过不少的实践开发经历,这里就不再赘述了,感兴趣的话可以自行移步阅读即可:

《YOLOV5融合SE注意力机制和SwinTransformer模块开发实践的中国象棋检测识别分析系统》

《基于轻量级YOLO开发构建中国象棋目标检测识别分析系统》

《yolov5s融合SPD-Conv用于提升小目标和低分辨率图像检测性能实践五子棋检测识别》

《基于yolov5s实践国际象棋目标检测模型开发》

本文主要是开发构建中国象棋棋子的识别系统,而以往的博文则主要是基于目标检测模型开发实现的,这里首先看下对应的效果图:

 简单看下数据集:

 共包含10个棋子的类别,详情如下:

【帅】

 【仕】

 【相】

 【马】

 【炮】

 【車】

 【兵】

 【车】

 【将】

 【象】

 本文搭建的轻量级的CNN模型详细参数结构如下所示:

 感兴趣的话可以很容易的复现出来去实现。

默认设定了200次epoch的迭代计算,训练日志输出如下所示:

 准确率曲线如下:

 损失值曲线如下所示:

 可视化推理实例如下所示:

 为了进一步分析,这里集成进来了GradCAM热力图分析功能,如下所示:
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值