赋能医学影像,AI助力智能化辅助诊断,基于嵌入式端超轻量级模型LeYOLO全系列【n/s/m/l】参数模型开发构建磁共振成像、CT扫描场景下医学图像脑肿瘤检测识别系统

在医学的浩瀚星空中,肿瘤与癌症等复杂疾病如同夜空中最难以捉摸的星辰,它们的发现与诊断往往依赖于高精度、高灵敏度的医学影像技术,如核磁共振(MRI)和计算机断层扫描(CT)等。这些技术如同现代医学的“火眼金睛”,能够穿透人体,揭示出隐藏在内部的疾病秘密。然而,传统的医学影像分析却面临着诸多挑战:高度依赖专家的主观判断、经验门槛高、分析过程耗时耗力,以及时效性不足等问题,这些都成为了制约医疗服务质量与效率提升的瓶颈。

随着人工智能(AI)技术的飞速发展,一场深刻的医疗变革正在悄然发生。AI以其强大的数据处理能力、学习能力和模式识别能力,为医学影像分析带来了前所未有的机遇。在医学影像领域,AI技术的应用不仅有望解决上述难题,更将推动疾病诊断向更加精准、高效、智能的方向迈进。医学影像数据是医疗大数据的重要组成部分,其海量、多维、复杂的特点为AI模型的训练提供了丰富的素材。通过深度学习等先进算法,AI可以从海量的影像数据中学习并提取出疾病特有的特征模式,进而构建出智能化的检测识别模型。这些模型能够自动分析影像,快速准确地识别出异常区域,为医生提供初步的诊断建议,极大地提高了诊断的效率和准确性。AI在医学影像分析中的应用,使得医生能够借助智能系统快速筛选出疑似病例,减轻了他们的工作负担,同时也降低了人为因素导致的误诊和漏诊风险。医生可以将更多精力集中在复杂病例的深入分析和治疗方案的制定上,从而提高了整体医疗服务的质量。此外,AI系统的实时性和远程服务能力,使得患者能够更快地获得诊断结果,尤其是对于偏远地区的患者而言,这无疑是巨大的福音。

本文从这样的背景出发,想要基于基础的实验尝试来开发构建医学影像场景下的智能化检测识别模型,在前面的系列博文中我们已经进行了相关的开发实践,感兴趣的话可以自行移步阅读即可:

《赋能医学影像,AI助力智能化辅助诊断,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建磁共振成像、CT扫描场景下医学图像脑肿瘤检测识别系统》

《赋能医学影像,AI助力智能化辅助诊断,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建磁共振成像、CT扫描场景下医学图像脑肿瘤检测识别系统》

《赋能医学影像,AI助力智能化辅助诊断,基于YOLOv7全系列【tiny/l/x】参数系列模型开发构建磁共振成像、CT扫描场景下医学图像脑肿瘤检测识别系统》

《赋能医学影像,AI助力智能化辅助诊断,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建磁共振成像、CT扫描场景下医学图像脑肿瘤检测识别系统》

《赋能医学影像,AI助力智能化辅助诊断,基于YOLOv9【yolov9/t/s/m/c/e】+GELAN【gelan/t/s/m/c/e】全系列参数模型构建磁共振成像CT扫描场景下医学图像脑肿瘤检测系统》

《赋能医学影像,AI助力智能化辅助诊断,基于YOLO家族最新端到端实时算法YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建磁共振成像、CT扫描场景下医学图像脑肿瘤检测识别系统》

传统的YOLOs系列的模型虽然提供了不同参数量级系列的模型,方便部署应用到不同的硬件平台上面去,但是实际在弱算力设备下还是捉襟见肘的,比如:对于树莓派来讲,那YOLOv5系列最为轻量级的n系列的模型也是非常吃力,但是那YOLOv5-lite系列的模型就可以比较轻松地跑起来,这印证了模型轻量化设计的必要性,本文采用的是正是经过轻量化设计了leYOLO模型,我们一起看试验下。

实例数据如下:

深度神经网络中的计算效率对于目标检测至关重要,尤其是在新模型将速度优先于高效计算(FLOP)的情况下。这种演变在某种程度上已经落后于嵌入式和面向移动的AI对象检测应用程序。这里重点讨论了基于FLOP的高效目标检测计算的神经网络结构的设计选择,并提出了几种优化方法来提高基于YLO的模型的效率。
首先,介绍了一种基于反向瓶颈和信息瓶颈原理的有效主干扩展方法。其次,提出了快速金字塔结构网络(FPAN),旨在促进快速多尺度特征共享,同时减少计算资源。最后提出了一个解耦的网络中网络(DNiN)检测头的设计,以提供快速而轻量级的计算分类和回归任务。
在这些优化的基础上,利用更高效的主干,为对象检测和以YOLO为中心的模型(称为LeYOLO)提供了一种新的缩放范例。在各种资源限制下始终优于现有模型,实现了前所未有的准确性和失败率。值得注意的是,LeYOLO Small在COCO val上仅以4.5次失败(G)获得了38.2%的竞争性mAP分数,与最新最先进的YOLOv9微小模型相比,计算量减少了42%,同时实现了类似的精度。我们的新型模型系列实现了以前未达到的浮点精度比,提供了从超低神经网络配置(<1 GFLOP)到高效但要求苛刻的目标检测设置(>4 GFLOP)的可扩展性,对于0.66、1.47、2.53、4.51、5.8和8.4浮点(G),具有25.2、31.3、35.2、38.2、39.3和41 mAP。

ModelsmAPImage SizeFLOP (G)
LeYOLONano25.23200.66
LeYOLONano31.34801.47
LeYOLOSmall35.24802.53
LeYOLOSmall38.26404.51
LeYOLOMedium39.36405.80
LeYOLOLarge41.07688.40

一共提供了n、s、m和l四款不同参数量级的模型。

这里我们保持完全相同的实验参数设置来进行四款模型的开发训练,等待训练完成之后我们来整体进行各项指标的对比分析。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss曲线】

在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

整体对比分析来看:不难发现四款不同参数量级的模型最终达到了较为相似的结果,l系列的模型最终的效果稍微劣一点,其余三款模型效果十分接近这里综合参数量考虑我们最终选定了s系列的模型来作为线上的推理计算模型。

接下来看下s系列模型的详细情况。

【离线推理实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

时代的浪潮在滚滚向前,拥抱科技时代带来的领域变革。展望未来,随着AI技术的不断成熟和医学影像数据的持续积累,AI在医学影像分析中的应用将更加广泛和深入。我们可以预见,未来的医学影像分析将实现全自动化、智能化和个性化,为医生提供更加全面、精准的诊断支持。同时,AI还将与其他医疗技术如基因测序、机器人手术等相结合,共同推动医疗行业的全面升级和转型。AI技术正以前所未有的速度和力量改变着医学影像分析的面貌,为疾病的早期发现、精准诊断和治疗提供了强有力的支持。在这场医疗变革的浪潮中,我们有理由相信,AI将成为推动医学进步的重要力量,引领我们迈向一个更加健康、美好的未来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值