在科技与能源领域日新月异的今天,清洁新能源,尤其是太阳能,正以前所未有的速度改变着我们的能源结构。太阳能光伏板,这一将太阳光转化为电能的神奇装置,已悄然走进千家万户,成为推动绿色能源革命的重要力量。然而,光伏板的运维管理却是一项复杂而艰巨的任务,尤其是积尘、老化、破损、污渍等问题,严重影响了其发电效率,成为制约太阳能产业发展的瓶颈。传统上,光伏板的巡检与维护依赖于经验丰富的工程师定期进行人工检查。然而,面对广阔分布的光伏板阵列,人工巡检不仅耗时费力,而且受限于人力资源和地域气象条件,难以实现高效、全面的监控。尤其是在白天,光伏板正处于高效发电状态,频繁的维修作业会严重干扰其正常运行,降低发电效率。而夜间虽然避开了光伏板的作业时间,但人工视力受限,难以准确发现问题,使得夜间巡检成为一项几乎不可能完成的任务。
然而,随着AI智能化模型的快速发展和无人机技术的广泛应用,这一难题终于迎来了破解之道。AI智能化模型以其强大的数据处理能力和模式识别能力,正在逐步取代传统的人工巡检方式,成为提升光伏板运维效率、降低运维成本的关键手段。而无人机技术,则以其灵活机动、覆盖范围广、作业效率高的特点,为AI模型在光伏板巡检中的应用提供了完美的平台。在光伏板夜间巡检运维场景下,无人机可以搭载红外摄像头进行巡航。红外成像技术能够在夜间或低光照条件下提供清晰的图像,使得无人机能够准确捕捉光伏板上的各种问题,如积尘、老化、破损、污渍等。这些图像数据经过专业的标注处理后,成为开发高精度目标检测模型的基础。目标检测模型是AI智能化模型在光伏板巡检中的核心应用之一。它能够自动识别并定位光伏板上的问题区域,实现对光伏板状态的实时监测。相较于人工巡检,AI模型不仅能够大幅提升巡检效率,还能够发现更多细微的问题,确保运维工作的精准性和及时性。更重要的是,AI模型能够基于历史数据和实时数据,进行智能分析和预测,提前发现潜在的风险点,触发预警机制,为运维团队提供充足的时间进行准备和响应。
在前面的系列博文中,我们以及进行了相关的开发实践,不过是建立在白天场景下采集的数据集开发构建的智能化检测模型,感兴趣的话可以自行移步阅读即可:
《AI智能化模型助力太阳能光伏板自动巡检运维,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
《AI智能化模型助力太阳能光伏板自动巡检运维,基于YOLOv7全系列【tiny/l/x】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
《AI智能化模型助力太阳能光伏板自动巡检运维,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
《AI智能化模型助力太阳能光伏板自动巡检运维,基于YOLOv9全系列【yolov9/t/s/m/c/e】参数模开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
《AI智能化模型助力太阳能光伏板自动巡检运维,基于YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
《AI智能化模型助力太阳能光伏板自动巡检运维,基于YOLOv11全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
《AI智能化模型助力太阳能光伏板自动巡检运维,基于嵌入式端超轻量级模型LeYOLO全系列【n/s/m/l】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
这里我们主要是考虑基于红外夜间无人机航拍的形式来进行探索实践,探索夜间巡检运维的可行性,在前文中我们进行了夜间无人机航拍红外场景下的相关开发实践,感兴趣的话可以自行移步阅读即可:
《AI助力红外场景下光伏板夜间巡检运维,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
《AI助力红外场景下光伏板夜间巡检运维,基于YOLOv7全系列【tiny/l/x】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
《AI助力红外场景下光伏板夜间巡检运维,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
《AI助力红外场景下光伏板夜间巡检运维,基于YOLOv9全系列【gelan/t/s/m/c/e—yolov9/t/s/m/c/e】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
《AI助力红外场景下光伏板夜间巡检运维,基于YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
《AI助力红外场景下光伏板夜间巡检运维,基于YOLOv11全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下太阳能光伏板污损缺陷智能检测识别系统》
本文正是在这样的思考背景下想要从实验性质的角度出发,尝试应用嵌入式端超轻量级的LeYOLO系列的参数模型来开发构建轻量级的检测识别分析系统,首先看下实例效果:
接下来简单看下实例数据:
深度神经网络中的计算效率对于目标检测至关重要,尤其是在新模型将速度优先于高效计算(FLOP)的情况下。这种演变在某种程度上已经落后于嵌入式和面向移动的AI对象检测应用程序。这里重点讨论了基于FLOP的高效目标检测计算的神经网络结构的设计选择,并提出了几种优化方法来提高基于YLO的模型的效率。
首先,介绍了一种基于反向瓶颈和信息瓶颈原理的有效主干扩展方法。其次,提出了快速金字塔结构网络(FPAN),旨在促进快速多尺度特征共享,同时减少计算资源。最后提出了一个解耦的网络中网络(DNiN)检测头的设计,以提供快速而轻量级的计算分类和回归任务。
在这些优化的基础上,利用更高效的主干,为对象检测和以YOLO为中心的模型(称为LeYOLO)提供了一种新的缩放范例。在各种资源限制下始终优于现有模型,实现了前所未有的准确性和失败率。值得注意的是,LeYOLO Small在COCO val上仅以4.5次失败(G)获得了38.2%的竞争性mAP分数,与最新最先进的YOLOv9微小模型相比,计算量减少了42%,同时实现了类似的精度。我们的新型模型系列实现了以前未达到的浮点精度比,提供了从超低神经网络配置(<1 GFLOP)到高效但要求苛刻的目标检测设置(>4 GFLOP)的可扩展性,对于0.66、1.47、2.53、4.51、5.8和8.4浮点(G),具有25.2、31.3、35.2、38.2、39.3和41 mAP。
一共提供了n、s、m和l四款不同参数量级的模型。
这里我们保持完全相同的实验参数设置来进行四款模型的开发训练,等待训练完成之后我们来整体进行各项指标的对比分析。
【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
【loss曲线】
在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。
【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。
【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。
【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。
整体对比分析来看:不难发现四款不同参数量级的模型最终达到了较为相似的结果,没有拉开非常大的差距,其中:n系列的模型效果最差,s和m系列的模型效果相近,l系列的模型效果最优,这里综合参数量考虑我们最终选定了l系列的模型来作为线上的推理计算模型,因为本身l和m的参数量相差并不大的。
接下来看下l系列模型的详细情况。
【离线推理实例】
【Batch实例】
【混淆矩阵】
【F1值曲线】
【Precision曲线】
【PR曲线】
【Recall曲线】
【训练可视化】
在AI智能化模型和无人机技术的共同赋能下,光伏板的夜间巡检运维工作有望实现从“不可能”到“可能”的跨越。运维团队可以根据AI模型的预警信息,精准指派专人定点完成维护工作,实现了人力资源的最大化精准化利用。这种智能化的运维模式,不仅提升了运维效率,降低了运维成本,还显著提高了光伏板的运行稳定性和发电效率。AI智能化模型与无人机技术的结合,为光伏板夜间巡检运维带来了革命性的变化。这一创新模式不仅解决了传统巡检方式中存在的诸多难题,还为光伏产业的可持续发展提供了有力支撑。随着技术的不断成熟和应用场景的不断拓展,AI智能化模型和无人机技术将在更多领域展现其独特的价值和潜力,为构建更加高效、绿色、可持续的能源体系贡献力量。