棋盘挑战
题目描述
给定一个 N×N 的棋盘,请你在上面放置 N
个棋子,要求满足:
每行每列都恰好有一个棋子
每条对角线上都最多只能有一个棋子
1 2 3 4 5 6
1 | | O | | | | |
2 | | | | O | | |
3 | | | | | | O |
4 | O | | | | | |
5 | | | O | | | |
6 | | | | | O | |
上图给出了当 N=6
时的一种解决方案,该方案可用序列 2 4 6 1 3 5 来描述,该序列按顺序给出了从第一行到第六行,每一行摆放的棋子所在的列的位置。
请你编写一个程序,给定一个 N×N
的棋盘以及 N
个棋子,请你找出所有满足上述条件的棋子放置方案。
输入格式
共一行,一个整数 N
。
输出格式
共四行,前三行每行输出一个整数序列,用来描述一种可行放置方案,序列中的第 i
个数表示第 i
行的棋子应该摆放的列的位置。
这三行描述的方案应该是整数序列字典序排在第一、第二、第三的方案。
第四行输出一个整数,表示可行放置方案的总数。
数据范围
6≤N≤13
输入样例:
6
输出样例:
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
思路
这就是简单的8皇后问题,一个dfs递归回溯就搞定了,想法全在代码的注释里
代码
#include<bits/stdc++.h>
using namespace std;
int sum=0;
bool flag1[