棋子的移动问题(递归问题)

本文详细解析了一种棋子移动算法,目标是将2n个棋子(n>=4)从初始状态移动到特定排列。棋子分为黑白两种,移动规则包括同时移动相邻的两个棋子,不限颜色和方向,但必须跳过若干棋子且不调换位置。文章提供了递归求解方法,并附带了C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

棋子的移动问题

题目描述:

有2n个棋子(n>=4)排成一行,白子用0表示,黑子用1表示,例如n=5时初始状态为0 0 0 0 0 1 1 1 1 1 _ _ (右边至少有2个空位),要求通过棋子移动最终成为 _ _0 1 0 1 0 1 0 1 0 1 .

棋子移动规则:
1.每次必须同时移动相邻的两个棋子。
2.颜色不限,移动方向不限。
3.每次移动必须跳过若干棋子。
4.不能调换这两个棋子的位置。

题解:

递归出口为n=4;这时候我们可以求解。
move(a,3,4,8,9);
move(a,7,8,3,4);
move(a,1,2,7,8);
move(a,6,7,1,2);
move(a,0,1,6,7);
即可。a为数组,前面两个数为两相邻小球的初始位置,后面两数为小球要移动的位置。
当n=5时,我们可以move(a,4,5,10,11);move(a,8,9,4,5);这样得到 0 0 0 0 1 1 1 1 _ _ 0 1序列。然而前10项就是n=4的序列。
当为n时,move(a,n-1,n,2n,2n+1);move(a,2n-2,2n-1,n-1,n);
这是前2(n-1)项为n-1时的序列,如此递归求解即可。

代码:

#include<iostream>
using namespace std;
void move(char a[],int m1,int n1,int m2,int n2)
{
 char temp=a[m1];
 a[m1]=a[m2];
 a[m2]=temp;
 temp=a[n1];
 a[n1]=a[n2];
 a[n2]=temp;
}
void chess(char a[],int n)
{
 if(n==4)
 {
  move(a,3,4,8,9);
  move(a,7,8,3,4);
  move(a,1,2,7,8);
  move(a,6,7,1,2);
  move(a,0,1,6,7);
 }
 else
 {
  move(a,n-1,n,2*n,2*n+1);
  move(a,2*n-2,2*n-1,n-1,n);
  chess(a,n-1);
 }
}
int main()
{
 int i,n;
 cin>>n; 
 char a[2*n+2];
 for(i=0;i<n;i++)
 {
  a[i]='0';
  a[n+i]='1';
 }
 a[2*n]='_';
 a[2*n+1]='_';
 chess(a,n);
 for(i=0;i<2*n+1;i++)
 {
  cout<<a[i]<<" ";
 }
 cout<<"\n";
 return 0;
 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值