算法之一动态规划

问题描述:
给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

对于一种物品,要么装入背包,要么不装。所以对于一种物品的装入状态可以取0和1.我们设物品i的装入状态为xi,xi∈ (0,1),此问题称为0-11背包问题。

数据:物品个数n=5,物品重量w[n]={2,2,6,5,4},物品价值V[n]={6,3,5,4,6}。

编码:

#include<iostream>
using namespace std;
int main(){
    int i,j;
    int w[10],v[10];
    int dp[10][100]={0};
    int n,c;
    printf("物品个数和背包容量:\n");
    scanf("%d %d",&n,&c);
    printf("输入物品重量和价值:\n");
    for(i=1;i<=n;i++){
        scanf("%d %d",&w[i],&v[i]);
    }

    for(i=1;i<=n;i++){
        for(j=0;j<=c;j++){
            if(j<w[i]){
                dp[i][j]=dp[i-1][j];
            }
            else
                dp[i][j]=dp[i-1][j]>dp[i-1][j-w[i]]+v[i]?dp[i-1][j]:dp[i-1][j-w[i]]+v[i];
        }
    }

    int x[10]={0};
    j=c;
    for(i=n;i>=1;i--){
        if(dp[i][j]>dp[i-1][j]){
            x[i]=1;
            j=j-w[i];
        }
    }

    printf("%d\n",dp[n][c]);
    for(i=1;i<=n;i++){
        printf("%d ",x[i]);
    }
}

输出结果:
这里写图片描述

可借助表格来帮助理解,重点在状态转移公式上
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值