图像检索技术综述(从SIFT到CNN)

最近开始学习图像检索,看到一篇2015年写的不错的综述,介绍了从SIFT到CNN的技术发展。看到网上也有一些翻译版本,但是明显的机器翻译,直接复制粘贴,很多专有词汇没有翻译到位。所以为了自己学习,也为了方便后面的同学阅读,斗胆翻译了一下。

这篇综述比较长,所以分为三个部分。本文是第一个部分,SIFT和CNN的综述


SIFT Meets CNN:A Decade Survey of Instance Retrieval

       摘要:在早期,基于内容的图像检索(CBIR)研究具有全局特征。自2003年以来,基于局部描述符(如SIFT)的图像检索由于SIFT在处理图像变换方面的优势而得到了十多年的广泛研究。最近,基于卷积神经网络(CNN)的图像表示方法引起了越来越多的关注,并显示出令人印象深刻的性能。鉴于这个快速发展的时代,本文对过去十年的实例检索(Instance Retrieval)进行了全面的调查,提出了基于SIFT的和基于CNN的两大类方法。对于前者,根据码本(codebook)大小,我们将文献组织成使用大型/中型/小型码本。对于后者,我们讨论了三种方法,即使用预先训练、微调的CNN模型&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值