【线性代数】2-4:矩阵操作(Matrix Operations)

原文地址1:https://www.face2ai.com/Math-Linear-Algebra-Chapter-2-4转载请标明出处

Abstract: 矩阵基本计算,包括加减乘法,主要是乘法的几种不同的理解

Keywords: Addition,Subtraction,Multiplication,Inner Product,Outer Product

矩阵操作

矩阵加法、减法

矩阵加减法,规则很简单,矩阵要求尺寸一样,row一样,column也得一样,这样按照对位相加减就行了。
[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] ± [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] = [ a 11 ± a 11 a 12 ± b 12 a 13 ± b 13 a 21 ± b 21 a 22 ± b 22 a 23 ± b 23 a 31 ± b 31 a 32 ± b 32 a 33 ± b 33 ] \begin{bmatrix}a_{11}&&a_{12}&&a_{13}\\ a_{21}&&a_{22}&&a_{23}\\ a_{31}&&a_{32}&&a_{33}\end{bmatrix} \pm \begin{bmatrix}b_{11}&&b_{12}&&b_{13}\\ b_{21}&&b_{22}&&b_{23}\\ b_{31}&&b_{32}&&b_{33}\end{bmatrix}\\= \begin{bmatrix}a_{11}\pm a_{11}&&a_{12}\pm b_{12}&&a_{13}\pm b_{13}\\ a_{21}\pm b_{21}&&a_{22}\pm b_{22}&&a_{23}\pm b_{23}\\ a_{31}\pm b_{31}&&a_{32}\pm b_{32}&&a_{33}\pm b_{33}\end{bmatrix} a11a21a31a12a22a32a13a23a33±b11b21b31b12b22b32b13b23b33=a11±a11a21±b21a31±b31a12±b12a22±b22a32±b32a13±b13a23±b23a33±b33
这个没啥好说的,别减错地方就行。一对一进行

乘法

乘法才是矩阵计算的关键,计算意义,计算量,等很多是些非常有意义的研究课题,我记得本科学习线性代数的时候,老师先来将行列式,接着就是矩阵的计算法则,然后接着就是rank类的东西了,确实书本是这么讲的,但是现在想想,好像没啥逻辑,所以就没去上课了(给自己随便找个借口逃课)。

矩阵规模

相乘的两个矩阵尺寸上有些要求,例如对于: A B AB AB
If A has n column,B must have n rows
如果A为 m × n m\times n m×n,B为 n × p n\times p n×p那么他们相乘的结果:
( m × n ) ( n × p ) = ( m × p ) (m\times n)(n \times p)=(m\times p) (m×n)(n×p)=(m×p)

行乘列(Row Dot Product Column)

Dot product之前已经讲过了,就是如何通过两个向量,pia的一下变成一个数字,矩阵可以看做是向量组成的,所以给出第一个规则,假设乘法为 A B = C AB=C AB=C
C i j = ( r o w    i    o f    A ) ⋅ ( c o l u m n    j    o f    B ) C_{ij}=(row\;i\;of\;A) \cdot (column\;j\;of\;B) Cij=(rowiofA)(columnjofB)
这个规则是我之前上课学的,也是最基本的矩阵乘法公式,当然也可以写成求和的形式,但是我觉得通过dot product来看这个反而更直观一些,就不再把求和那个写出来了,补充句,在矩阵相乘的编程处理中,经过调整内外层循环,可以最大化利用高速缓冲,能够提高乘法速度。这个让我想起来之前项目,同事非要自己写乘法,然后就按照公式计算顺序,写了一个一毛一样的东西出来,虽然只做3x3的一个小矩阵乘法,速度什么的基本没什么影响,但是我觉得这当你不能保证你写的功能的稳定性和速度的时候,使用稳定的第三方库是个不错的选择。

矩阵内乘、外乘(Inner or Outer)

dot product也叫inner product,当时我就在想有没有outer product,Pro. Strang在课堂上没有介绍outer但是在书上写了下,inner的矩阵形式是这样的:
[ a 1 a 2 … a n ] [ b 1 b 2 ⋮ b n ] = ∑ i = 0 n a i ∗ b i \begin{bmatrix}a_1&a_2&\dots&a_n\end{bmatrix} \begin{bmatrix}b_1\\b_2\newline \vdots \\b_n\end{bmatrix}=\sum_{i=0}^{n}a_i*b_i [a1a2an]b1b2bn=i=0naibi
outer的矩阵形式,就是。。
[ a 1 a 2 ⋮ a n ] [ b 1 b 2 … b m ] = [ a 1 b 1 a 1 b 2 … a 1 b m a 2 b 1 a 2 b 2 … a 2 b m ⋮ ⋮ … ⋮ a n b 1 a n b 2 … a n b m ] \begin{bmatrix}a_1\\a_2\newline \vdots \\a_n\end{bmatrix} \begin{bmatrix}b_1&b_2&\dots&b_m\end{bmatrix} =\begin{bmatrix} a_1b_1&&a_1b_2&&\dots &&a_1b_m\\ a_2b_1&&a_2b_2&&\dots &&a_2b_m\\ \vdots&&\vdots&&\dots &&\vdots\\ a_nb_1&&a_nb_2&&\dots &&a_nb_m\\ \end{bmatrix} a1a2an[b1b2bm]=a1b1a2b1anb1a1b2a2b2anb2a1bma2bmanbm
其实outer的过程通过一行一列产生一个矩阵,所以当多列和多行(行和列必须相等数量)的矩阵相乘的时候就会产生多个矩阵,再对矩阵进行相加,这个过程的编程实现时,缓存利用率很高,就是本段开头说道的矩阵相乘的速度问题,当然这是不是最快的解决办法我也不知道,知识从哪本书上看到了这种说法,印象比较深刻

列模型(Column Model)

列模型,如果把矩阵看做是很多列的组合,那么可以回归到最早的 A x = b Ax=b Ax=b的过程
A A A是被乘矩阵, x \textbf{x} x 扩展成多列的矩阵 X X X
X = [ ⋮ ⋮ … ⋮ x 1 x 2 … x n ⋮ ⋮ … ⋮ ] X=\begin{bmatrix} \vdots&&\vdots&&\dots &&\vdots\\ x_1&&x_2&&\dots&&x_n\\ \vdots&&\vdots&&\dots &&\vdots\\ \end{bmatrix} X=x1x2xn
把x代入
$$
AX=
A
\begin{bmatrix}
\vdots&&\vdots&&\dots &&\vdots\
x_1&&x_2&&\dots&&x_n\
\vdots&&\vdots&&\dots &&\vdots\
\end{bmatrix}\

\begin{bmatrix}
\vdots&&\vdots&&\dots &&\vdots\
A x_1&&A x_2&&\dots&&A x_n\
\vdots&&\vdots&&\dots &&\vdots\
\end{bmatrix}
$$
写数学类的博客就是累,还是贴代码那种技术博客好写。
把X分解成多个列,每列与A的乘积作为结果对应的列,这就是列视角,或者叫做列模型

行模型(Row Model)

有行就有列,有列就有行:
$$
A=\begin{bmatrix}
\dots&& a_1 &&\dots\
\dots&& a_2 &&\dots\
\vdots&&\vdots&&\vdots\
\dots&& a_m &&\dots\
\end{bmatrix}\
AX=
\begin{bmatrix}
\dots&& a_1 &&\dots\
\dots&& a_2 &&\dots\
\vdots&&\vdots&&\vdots\
\dots&& a_m &&\dots\
\end{bmatrix}X

\begin{bmatrix}
\dots&& a_1X &&\dots\
\dots&& a_2X &&\dots\
\vdots&&\vdots&&\vdots\
\dots&& a_mX &&\dots\
\end{bmatrix}
$$
行过程和列过程基本呈现一种对称关系,这也是线性代数有趣的一点,经常是左右开工,得到相同的结果。

块(Block)

没错,矩阵是可以切块的,最极端的方式就是每个矩阵按照一个块一个元素的切法,那就和原始矩阵一样了,这种切块粒度太小,如果把一个矩阵当做一块,那粒度又太大,举个一般的例子🌰
继续使用上一节消元的矩阵
$$
E=\begin{bmatrix}
1&&0&&0\
-3&&1&&0\
0&&0&&1\
\end{bmatrix}\
A=\begin{bmatrix}
1&&x&&x\
3&&x&&x\
4&&x&&x\
\end{bmatrix}\
EA=
\left[\begin{array}{c|cc}
1&0&0\\hline
-3&1&0\
0&0&1\
\end{array}\right]
\left[\begin{array}{c|cc}
1&&x&&x\\hline
3&&x&&x\
4&&x&&x\
\end{array}\right]\

\left[\begin{array}{c|cc}
1&&x&&x\\hline
0&&x&&x\
0&&x&&x\
\end{array}\right]
分 块 进 行 分块进行
EA=
\left[\begin{array}{c|c}
I&0\\hline
-CA^{-1}&I\
\end{array}\right]
\left[\begin{array}{c|c}
A&B\\hline
C&D\
\end{array}\right]\

\left[\begin{array}{c|c}
IA+0C&IB+0D\\hline
-CA{-1}A+IC&-CA{-1}B+D\
\end{array}\right]
$$

吃完饭码了这些公式,然后我又饿了,这是个消元的过程,E是消元矩阵,我们把3x3矩阵分块成了2x2的块矩阵,分块的规则是,对应要相乘的矩阵规模必须匹配正确(原文match)。然后把块当做元素继续按照乘法法则进行相乘.

注意:分成的块矩阵相乘与矩阵相乘要求一致,顺序不能互换。 A B ≠ B A AB\neq BA AB=BA

Schur Complement

矩阵分块消元,右下角的那个矩阵,也就是
− C A − 1 B + D -CA^{-1}B+D CA1B+D
被叫做Schur Complement。

矩阵法则

法律说明,你必须遵守法律,矩阵的法律和现实的法律有点不一样,现实的法律是“法不禁止即可为”,但是矩阵的法律如果没说明可以,也没规定不行,那这个law你就要小心使用,最好在论证后进行使用!
A + B = B + A c ( A + B ) = c A + c B A + ( B + C ) = ( A + B ) + C A B ≠ B A C ( A + B ) = C A + C B ( A + B ) C = A C + B C A ( B C ) = ( A B ) C A p = A A … A ( p    f a c t o r s ) A p ⋅ A q = A p + q ( A p ) q = A p q A+B=B+A\\ c(A+B)=cA+cB\\ A+(B+C)=(A+B)+C\\ AB \neq BA\\ C(A+B)=CA+CB\\ (A+B)C=AC+BC\\ A(BC)=(AB)C\\ A^p=AA\dots A(p\;factors)\\ A^p\cdot A^q=A^{p+q}\\ (A^p)^q=A^{pq}\\ A+B=B+Ac(A+B)=cA+cBA+(B+C)=(A+B)+CAB=BAC(A+B)=CA+CB(A+B)C=AC+BCA(BC)=(AB)CAp=AAA(pfactors)ApAq=Ap+q(Ap)q=Apq

以上是不完全的矩阵法则

A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC
证明:
逐列进行,比如b,c是B和C的对应两个列
A ( b + c ) = A b + A c A(b+c)=Ab+Ac A(b+c)=Ab+Ac
这是所有的关键—线性(linearity)

总结

这是矩阵基本操作的一个总结,依法办事,做法律允许的计算才能得到正确的结果,当然也取决于机器的问题,比如后面要写的数值分析,里面就有不少算法精度收到机器的限制,导致合法操作得不到准确结果,各位加油,我们后面继续!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值