Matrix operations

本文为《Linear algebra and its applications》的读书笔记

  • If A A A is an m × n m \times n m×n matrix, each column of A A A identifies a vector in R m \mathbb R^m Rm.
    A = [    a 1     a 2     . . .     a n    ] A=[\ \ \boldsymbol a_1\ \ \ \boldsymbol a_2\ \ \ ...\ \ \ \boldsymbol a_n\ \ ] A=[  a1   a2   ...   an  ]在这里插入图片描述
  • The diagonal entries in an m × n m \times n m×n matrix A = [ a i j ] A = [a_{ij}] A=[aij] are a 11 a_{11} a11, a 22 a_{22} a22, a 33 a_{33} a33… and they form the main diagonal (主对角线) of A A A. A diagonal matrix (对角矩阵) is a square n × n n \times n n×n matrix whose nondiagonal entries are zero. An m × n m \times n m×n matrix whose entries are all zero is a zero matrix (零矩阵) and is written as 0 0 0. The size of a zero matrix is usually clear from the context.

  • The arithmetic for vectors described earlier has a natural extension to matrices.

Sums and Scalar Multiples

Sum

  • The sum A + B A + B A+B is the m × n m \times n m×n matrix whose columns are the sums of the corresponding columns in A A A and B B B.
  • The sum A + B A + B A+B is defined only when A A A and B B B are the same size.

Scalar Multiple

  • If r r r is a scalar and A A A is a matrix, then the scalar multiple r A rA rA is the matrix whose columns are r r r times the corresponding columns in A A A.

Matrix Multiplication

Multiplication of matrices corresponds to composition of linear transformations

  • When a matrix B B B multiplies a vector x \boldsymbol x x, it transforms x \boldsymbol x x into the vector B x B\boldsymbol x Bx. If this vector is then multiplied in turn by a matrix A A A, the resulting vector is A ( B x ) A(B\boldsymbol x) A(Bx). See Figure 2.
    在这里插入图片描述Thus A ( B x ) A(B\boldsymbol x) A(Bx) is produced from x \boldsymbol x x by a c o m p o s i t i o n composition composition of mappings. Our goal is to represent this composite mapping as multiplication by a single matrix, denoted by A B AB AB, so that
    A ( B x ) = ( A B ) x A(B\boldsymbol x)=(AB)\boldsymbol x A(Bx)=(AB)x在这里插入图片描述

  • If A A A is m × n m \times n m×n, B B B is n × p n \times p n×p, and x \boldsymbol x x is in R p \mathbb R^p Rp. Then
    B x = x 1 b 1 + . . . + x p b p B\boldsymbol x=x_1\boldsymbol b_1+...+x_p\boldsymbol b_p Bx=x1b1+...+xpbpBy the linearity of multiplication by A A A,
    A ( B x ) = A ( x 1 b 1 ) + . . . + A ( x p b p ) = x 1 A b 1 + . . . + x p A b p A(B\boldsymbol x)=A(x_1\boldsymbol b_1)+...+A(x_p\boldsymbol b_p)=x_1A\boldsymbol b_1+...+x_pA\boldsymbol b_p A(Bx)=A(x1b1)+...+A(xpbp)=x1Ab1+...+xpAbp
  • The vector A ( B x ) A(B\boldsymbol x) A(Bx) is a linear combination of the vectors A b 1 A\boldsymbol b_1 Ab1,…, A b p A\boldsymbol b_p Abp, using the entries in x \boldsymbol x x as weights. In matrix notation, this linear combination is written as
    A ( B x ) = [    A b 1     A b 2     . . .     A b p    ] x A(B\boldsymbol x)=[\ \ A\boldsymbol b_1\ \ \ A\boldsymbol b_2\ \ \ ...\ \ \ A\boldsymbol b_p\ \ ]\boldsymbol x A(Bx)=[  Ab1   Ab2   ...   Abp  ]xThus multiplication by [    A b 1     A b 2     . . .     A b p    ] [\ \ A\boldsymbol b_1\ \ \ A\boldsymbol b_2\ \ \ ...\ \ \ A\boldsymbol b_p\ \ ] [  Ab1   Ab2   ...   Abp  ] transforms x \boldsymbol x x into A ( B x ) A(B\boldsymbol x) A(Bx). We have found the matrix we sought!

在这里插入图片描述

  • Each column of A B AB AB is a linear combination of the columns of A A A using weights from the corresponding column of B B B.
  • Obviously, the number of columns of A A A must match the number of rows in B B B in order for a linear combination such as A b 1 A\boldsymbol b_1 Ab1 to be defined. Also, the definition of A B AB AB shows that A B AB AB has the same number of rows as A A A and the same number of columns as B B B.

The definition of A B AB AB lends itself well to parallel processing on a computer. The columns of B B B are assigned individually or in groups to different processors, which independently and hence simultaneously compute the corresponding columns of A B AB AB.


EXAMPLE 3

Compute A B AB AB, where A = [ 2 3 1 − 5 ] A =\begin{bmatrix}2&3\\1&-5\end{bmatrix} A=[2135] and B = [ 4 3 6 1 − 2 3 ] B =\begin{bmatrix}4&3&6\\1&-2&3\end{bmatrix} B=[413263].

SOLUTION
在这里插入图片描述


  • The definition of A B AB AB is important for theoretical work and applications, but the following rule provides a more efficient method for calculating the individual entries in A B AB AB when working small problems by hand.

在这里插入图片描述

  • Let r o w i ( A ) row_i(A) rowi(A) denote the i i i th row of a matrix A A A. Then
    r o w i ( A B ) = r o w i ( A ) ⋅ B row_i(AB)=row_i(A)\cdot B rowi(AB)=rowi(A)B

Inner product

  • View vectors in R n \mathbb R^n Rn as n × 1 n \times 1 n×1 matrices. For u \boldsymbol u u and v \boldsymbol v v in R n \mathbb R^n Rn, the matrix product u T v \boldsymbol u^T \boldsymbol v uTv is a 1 × 1 1 \times 1 1×1 matrix, called the scalar product (数量积), or inner product (内积), of u \boldsymbol u u and v \boldsymbol v v. It is usually written as a single real number without brackets.
  • Inner products ( u T v \boldsymbol u^T \boldsymbol v uTv and v T u \boldsymbol v^T \boldsymbol u vTu) have the transpose symbol in the middle.
  • u T v = v T u \boldsymbol u^T \boldsymbol v=\boldsymbol v^T \boldsymbol u uTv=vTu

Outer product

  • The matrix product u v T \boldsymbol u\boldsymbol v^T uvT is an n × n n \times n n×n matrix, called the outer product (外积) of u \boldsymbol u u and v \boldsymbol v v.
  • Outer products ( u v T \boldsymbol u\boldsymbol v^T uvT and v u T \boldsymbol v\boldsymbol u^T vuT) have the transpose symbol on the outside.
  • 外积 u v T \boldsymbol u\boldsymbol v^T uvT v u T \boldsymbol v\boldsymbol u^T vuT 互为对称矩阵

Properties of Matrix Multiplication

  • Recall that I m I_m Im represents the m × m m \times m m×m identity matrix and I m x = x I_m\boldsymbol x=\boldsymbol x Imx=x for all x \boldsymbol x x in R m \mathbb R^m Rm.

在这里插入图片描述

  • 补充性质
    • (1) 两个同阶上三角矩阵的乘积仍为上三角矩阵
    • (2) 两个同阶下三角矩阵的乘积仍为下三角矩阵
    • (3) 两个同阶对角矩阵的乘积仍为对角矩阵,且新的对角元为两个原对角元的乘积

PROOF

Property (a)

  • Property (a) follows from the fact that matrix multiplication corresponds to composition of linear transformations (which are functions), and it is known that the composition of functions is associative.

在离散数学中,函数的复合运算 f ∘ g f\circ g fg 被定义为关系乘积 g ∗ f g*f gf,可以证明关系乘积是满足结合律的,因此函数的复合运算也满足结合律

  • Here is another proof of (a) that rests on the “column definition” of the product of two matrices. Let
    C = [    c 1     c 2     . . .     c p    ] B C = [    B c 1     B c 2     . . .     B c p    ] A ( B C ) = [    A ( B c 1 )     A ( B c 2 )     . . .     A ( B c p )    ] C=[\ \ \boldsymbol c_1\ \ \ \boldsymbol c_2\ \ \ ...\ \ \ \boldsymbol c_p\ \ ]\\BC=[\ \ B\boldsymbol c_1\ \ \ B\boldsymbol c_2\ \ \ ...\ \ \ B\boldsymbol c_p\ \ ]\\A(BC)=[\ \ A(B\boldsymbol c_1)\ \ \ A(B\boldsymbol c_2)\ \ \ ...\ \ \ A(B\boldsymbol c_p)\ \ ] C=[  c1   c2   ...   cp  ]BC=[  Bc1   Bc2   ...   Bcp  ]A(BC)=[  A(Bc1)   A(Bc2)   ...   A(Bcp)  ]Recall that the definition of A B AB AB makes A ( B x ) = ( A B ) x A(B\boldsymbol x)= (AB)\boldsymbol x A(Bx)=(AB)x for all x \boldsymbol x x, so
    A ( B C ) = [    ( A B ) c 1     . . .     ( A B ) c p    ] = ( A B ) C A(BC)= [\ \ (AB)\boldsymbol c_1\ \ \ ...\ \ \ (AB)\boldsymbol c_p\ \ ]=(AB)C A(BC)=[  (AB)c1   ...   (AB)cp  ]=(AB)C

WARNINGS:

  • In general, A B ≠ B A AB \neq BA AB=BA. If A B = B A AB = BA AB=BA, we say that A A A and B B B commute with one another.(可交换的)
  • The cancellation laws (消去律) do not hold for matrix multiplication. That is, if A B = A C AB = AC AB=AC, then it is not true in general that B = C B = C B=C.
  • If a product A B AB AB is the zero matrix, you cannot conclude in general that either A = 0 A = 0 A=0 or B = 0 B = 0 B=0.

Tip: When B B B is square and C C C has fewer columns than A A A has rows, it is more efficient to compute A ( B C ) A(BC) A(BC) than ( A B ) C (AB)C (AB)C .


C h e c k p o i n t Checkpoint Checkpoint:

Show that if y \boldsymbol y y is a linear combination of the columns of A B AB AB, then y \boldsymbol y y is a linear combination of the columns of A A A.

A n s w e r   t o   C h e c k p o i n t Answer\ to\ Checkpoint Answer to Checkpoint:

  • If y \boldsymbol y y is a linear combination of the columns of A B AB AB, then there is a vector x \boldsymbol x x such that y \boldsymbol y y = ( A B ) x (AB)\boldsymbol x (AB)x. By definition of matrix multiplication, y = A ( B x ) \boldsymbol y = A(B\boldsymbol x) y=A(Bx). This expresses y \boldsymbol y y as a linear combination of the columns of A A A using the entries in the vector B x B\boldsymbol x Bx as weights.

EXAMPLE 4

Let x 1 , . . . , x n x_1,..., x_n x1,...,xn be fixed numbers. The matrix below, called a Vandermonde matrix (范德蒙德矩阵), occurs in applications such as signal processing, error-correcting codes (纠错码), and polynomial interpolation.
在这里插入图片描述Given y = ( y 1 , . . . , y n ) \boldsymbol y =(y_1,..., y_n) y=(y1,...,yn) in R n \mathbb R^n Rn, suppose c = ( c 0 , . . . , c n − 1 ) \boldsymbol c = (c_0,..., c_{n-1}) c=(c0,...,cn1) in R n \mathbb R^n Rn satisfies V c = y V \boldsymbol c = \boldsymbol y Vc=y, and define the polynomial
p ( t ) = c 0 + c 1 t + c 2 t 2 + . . . + c n − 1 t n − 1 p(t) = c_0 + c_1t + c_2t^2 + ...+ c_{n-1}t^{ n-1} p(t)=c0+c1t+c2t2+...+cn1tn1

  • a. Show that p ( x 1 ) = y 1 , . . . , p ( x n ) = y n p(x_1)= y_1,..., p(x_n)= y_n p(x1)=y1,...,p(xn)=yn. We call p ( t ) p(t) p(t) an i n t e r p o l a t i n g interpolating interpolating p o l y n o m i a l polynomial polynomial f o r for for t h e the the p o i n t s points points ( x 1 , y 1 ) , . . . , ( x n , y n ) (x_1, y_1) ,...,(x_n,y_n) (x1,y1),...,(xn,yn) because the graph of p ( t ) p(t) p(t) passes through the points.
  • b. Suppose x 1 , . . . , x n x_1,...,x_n x1,...,xn are distinct numbers (相异的数). Show that the columns of V V V are linearly independent.
  • c. Prove: “If x 1 , . . . , x n x_1,..., x_n x1,...,xn are distinct numbers, and y 1 , . . . , y n y_1,..., y_n y1,...,yn are arbitrary numbers, then there is an interpolating polynomial of degree ≤ n − 1 \leq n - 1 n1 for ( x 1 , y 1 ) , . . . , ( x n , y n ) (x_1, y_1),...,(x_n, y_n) (x1,y1),...,(xn,yn).”

SOLUTION

  • (b) [Hint: How many zeros can a polynomial of degree n − 1 n -1 n1 have?] (一个 n − 1 n-1 n1 次多项式有多少个零点?)

Powers of a Matrix

  • If A A A is an n × n n \times n n×n matrix and if k k k is a positive integer, then
    在这里插入图片描述
  • If k = 0 k = 0 k=0; then A 0 x A^0\boldsymbol x A0x should be x \boldsymbol x x itself. Thus A 0 A^0 A0 is interpreted as the identity matrix.

The Transpose of a Matrix

在这里插入图片描述


  • The generalization of Theorem 3(d) to products of more than two factors can be stated in words as follows:

在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值