【线性代数】2-7:转置与变换(Transposes and Permutation)

原文地址1:https://www.face2ai.com/Math-Linear-Algebra-Chapter-2-7转载请标明出处

Abstract: 矩阵的转置和行变换(permutation),包含一些运算的转置,以及对称概念的提出和相关性质
Keywords: Transposes,Permutation,Symmetric,Inner Products,R’R

开篇废话

这些基本运算的篇,好难写,公式和基本逻辑太多,说少了说不明白,说多了又啰嗦。本来计划的是写短小精悍的,基本每篇就写一个知识点,现在看看是不行了,这些东西都太连贯了,没办法拆开,争取后面到了高级算法的时候就可以每篇写很短,写精髓了,这一些就是一两千字,对我有点挑战啊,哈哈哈。如果各位有看不懂的,请回顾以前的文章,因为我是按照基本逻辑来的,就是一个知识点衍生另一,不会凭空就搞出来什么知识点,那样又变成大学上课了,big Picture一定要有,就是我们第一篇线性代数的,big Picture!

转置(Transposes)

转置(Transposes)

转置是矩阵特有的计算,他的根本就是矩阵是一块数字,其中有顺序和位置关系,今天说的转置和置换,都是针对位置的,也就是元素的数值并不改变,要改变的是元素的位置关系,permutation我们后面再说,transpose的计算规则的就是,对于某元素,其位置行和列相互交换
( A T ) i j = A j i (A^T)_{ij}=A_{ji} (AT)ij=Aji
一个下三角矩阵的transpose是上三角矩阵。
但是下三角矩阵的逆还是下三角矩阵。

映射(Properties)

sum:
( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
Products:
( A B ) T = B T A T (AB)^{T}=B^{T}A^{T} (AB)T=BTAT
Inverse:
( A − 1 ) T = ( A T ) − 1 (A^{-1})^T=(A^T)^{-1} (A1)T=(AT)1
这里唯一有点疑惑的可能就是Product需要调换位置了,想要理解为啥要换位置,可以回归最简单的
A x = b Ax=b Ax=b 等号有个很好的作用就是,如果对两侧同时做某一操作的时候,等号不会改变,
( A x ) T = b T (Ax)^T=b^T (Ax)T=bT
我们来分析下,如果按照我们之前的解释,Ax是x作为系数关于A的线性组合,从矩阵乘法的角度就Column Model,其结果是b,一个列向量,用A各列线性组合出来的结果。如果b转置了,变成了一个行向量,那么我们对应的也应该改成Row Model来调整等号前面的结构了,所以
b T = x T A T b^T=x^TA^T bT=xTAT
x转置变成了行,A的列也变成了行,那么行模型可以很好的让他们的结果与b的行形式相等
没明白的同学,拿笔算算,就会发现确实是这样的,而且如果不调换位置,矩阵不满足乘法要求,尺寸对不上。
那么根据上面的特征,组合多个x得到矩阵B
B = [ x 1 x 2 ] A B = [ A x 1 A x 2 ] B T A T = [ x 1 T A T x 2 T A T ] B=\begin{bmatrix}x_1&x_2\end{bmatrix} AB=\begin{bmatrix}Ax_1&Ax_2\end{bmatrix} B^TA^T=\begin{bmatrix}x_1^TAT\\x_2^TA^T\end{bmatrix} B=[x1x2]AB=[Ax1Ax2]BTAT=[x1TATx2TAT]
与上面情况吻合,证明在矩阵与矩阵相乘过程也符合情况。
在更多的矩阵相乘的时候,与逆的情况类似
比如上一节的男猪脚:
A = L D U A T = U T D T L T D T = D A=LDU\\ A^T=U^TD^TL^T\\ D^T=D\\ A=LDUAT=UTDTLTDT=D

对角矩阵的转置还是他自己

逆的转置就是转置的逆
A − 1 A = I A T ( A − 1 ) T = I T = I A^{-1}A=I\\ A^T(A^{-1})^T=I^T=I\\ A1A=IAT(A1)T=IT=I
so
( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T

再说 Inner Product

之前不完整的介绍过内积,就是点乘,但是一般情况两个向量内积,写成转置形式

⟨ a , b ⟩ = a T b \langle a,b\rangle=a^Tb a,b=aTb

后面的转置才比较正规,内积普遍用于实际生产,比如机械,金融等各类公式,这样我们就非常接近应用数学的核心了。

( A x ) T y = x T ( A T y ) (Ax)^Ty=x^T(A^Ty) (Ax)Ty=xT(ATy)

( A x ) (Ax) (Ax) y y y 的内积等于 x x x A T y A^Ty ATy 的内积.

对称(symmetric)

对称的定义是:
A T = A A^T=A AT=A
Means
a j i = a i j a_{ji}=a_{ij} aji=aij
对称矩阵的逆也是对称矩阵,本篇讨论的主要是矩阵内部位置关系相关的计算。
对于对称矩阵A:
( A − 1 ) T = ( A T ) − 1 = A − 1 (A^{-1})^T=(A^T)^{-1}=A^{-1} (A1)T=(AT)1=A1

R T R R^TR RTR

对于一个转置和其本身的乘积,也是一个对称矩阵,证明很简单:
( R T R ) T = R T R (R^TR)^T=R^TR (RTR)T=RTR
so
R T R R^TR RTR是一个对称矩阵。
对称矩阵的消元过程也比较简单,对于对称矩阵 A = L D U A=LDU A=LDU 其中 L T = U L^T=U LT=U也就说上三角矩阵和下三角矩阵是转置关系, ( L D L T ) T = L D L T (LDL^T)^T=LDL^T (LDLT)T=LDLT 也证明A是对称的,对称矩阵消元需要的计算量应该是非对称矩阵的一半大概是 n 3 / 6 n^3/6 n3/6

Permutation

Permutation就是之前消元里面的行变换的矩阵化表示,其定义是:

A Permutation matrix P has the rows of the identity I in any order
置换矩阵有很多特殊的性质,比如说
p − 1 = p T p^{-1}=p^T p1=pT
对于nxn的Permutation矩阵组,一共有 n ! n! n! 个矩阵

P A = L U PA=LU PA=LU

上节的LU分解有一个前提假设就是,不存在主元是0的情况,也就是说不需要行变换就可以达到消元的效果,但是现在我们去掉这个假设,使问题更为一般化,PA就是对A的某些行进行变换,后进行分解
对于行变换,有两种方式:
1:先对A进行行变换,然后分解,那么就是 P A = L U PA=LU PA=LU
2:一边分解一边进行行变换,也就是在中间过程 A = L 1 P 1 U 1 A=L_1P_1U_1 A=L1P1U1
更多情况下,我们选择第一种方式,因为第一种方式更为简单方便。

Conclusion

总结一下就是转置和对称的相互关系,以及其一些特性,矩阵中元素的位置变换成为了本文重点。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值