下界(lower bounding)定理和下界紧密性比较

2019-03-18 09:08:01

阅读数 90

评论数 1

SAX(Symbolic Aggregate Approximation ):时间序列的符号化表示(附Python3代码,包括距离计算)

SAX全称 Symbolic Aggregate Approximation, 中文意思是符号近似聚合,简单的说是一种把时间序列进行符号化表示的方法。 SAX的基本步骤如下: (1)将原始时间序列规格化,转换成均值为0,标准差为1 的的序列,原论文中解释的原因如下: (2...

2019-03-06 20:34:00

阅读数 529

评论数 0

数据清洗总结笔记

1.删除多列 def drop_multiple_col(col_names_list, df): ''' AIM -> Drop multiple columns based on their column names INPUT ...

2019-02-12 21:27:27

阅读数 89

评论数 0

谷歌Colab使用过程遇到的问题总结

1. AttributeError: module ‘PIL.Image’ has no attribute ‘register_extensions 搜了一晚上,可能是因为pillow的版本问题,改过来就好了 !pip install pillow==4.1.1  

2018-11-20 21:57:25

阅读数 294

评论数 0

滑动t检验代码(Python)

     最近在做时间序列突变点检测,找了好久发现没有Python的代码,于是跟着公式写了一个,如果有不对的地方,欢迎大家批评指正。 代码如下: import numpy as np import matplotlib.pyplot as plt def huaT(inputdata): ...

2018-10-26 09:45:17

阅读数 629

评论数 1

python分块读取大数据,避免内存不足

import pandas as pd def read_data(file_name): ''' file_name:文件地址 ''' inputfile = open(file_name, 'rb') #可打开含有中文的地址 data = pd.r...

2018-08-02 21:24:29

阅读数 2196

评论数 4

python list中的元素类型转换与字符串拼接且拼接后保持元素间相对顺序不变

  引子:    今天碰上了个问题:数据中的时间被分开了。我们常见的时间格式是时间列为一列,比如:2018-07-30 14:54。这是一个数据,在excel / csv中占一个单元格。但是今天遇到的数据是年月日和时分秒是分开的,如下图所示,第一列是年月日,第二列是时分秒,最可恶的是时分秒还是...

2018-07-30 16:30:20

阅读数 253

评论数 0

机器学习系统模型调优实战--所有调优技术都附相应的scikit-learn实现

https://blog.csdn.net/xlinsist/article/details/51344449 机器学习系统模型调优实战--所有调优技术都附相应的scikit-learn实现  

2018-07-21 21:45:45

阅读数 111

评论数 0

朴素贝叶斯小结

  朴素贝叶斯的思想基础:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没...

2018-07-12 21:07:55

阅读数 61

评论数 0

隐马尔可夫模型

这两篇博客讲的比较透彻:隐马尔可夫简单理解下雨天到底要不要打仗?极简图解入门隐马尔可夫模型侵删。

2018-07-12 16:45:33

阅读数 58

评论数 0

神经网络小结

转载地址:笔记更新网址(视频下载地址公布):  https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes  DeepLearning.ai 笔记: https://github.com/fengdu78/deeplearning_ai_books...

2018-06-29 21:08:54

阅读数 66

评论数 0

神经网络的反向传播

转载:一文弄懂神经网络中的反向传播转载: 均方误差(MSE)和均方根误差(RMSE)和平均绝对误差(MAE)侵删。

2018-06-29 19:34:06

阅读数 64

评论数 0

机器学习模型融合

记录几篇模型融合的好文:模型融合方法https://blog.csdn.net/sinat_29819401/article/details/71191219笔记︱集成学习Ensemble Learning与树模型、Bagging 和 Boosting、模型融合https://blog.csdn....

2018-06-06 19:07:02

阅读数 341

评论数 0

正确率、召回率和F值

正确率、召回率和F值是目标的重要评价指标。  正确率 = 正确识别的个体总数 / 识别出的个体总数 召回率 = 正确识别的个体总数 / 测试集中存在的个体总数 F值 = 正确率 * 召回率 * 2 / (正确率 + 召回率)不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以...

2018-06-06 16:27:17

阅读数 66

评论数 0

sklearn中的random_state

很多人都把random_state解释为随机数种子。是不是很懵逼?什么是随机数种子?我也不知道什么是随机数种子。但是,随机数种子是为了保证每次随机的结果都是一样的Example:sklarn可以随机分割训练集和测试集(交叉验证),只需要在代码中引入model_selection.train_tes...

2018-05-22 16:58:13

阅读数 5470

评论数 1

python中的axis=0,axis=1

最近关于axis=0,axis=1到底指代是行还是列很困惑。然后搜到了知乎上关于axis的指代问题:https://www.zhihu.com/question/58993137高票回答很棒!  总的来说:   axis的 0轴匹配的是index, 涉及上下运算,跨行;1轴匹配的是columns,...

2018-05-10 20:01:59

阅读数 1096

评论数 0

一起读懂传说中的经典:受限玻尔兹曼机

本文摘自机器之心公众号,原文地址:一起读懂传说中的经典:受限玻尔兹曼机    侵删一起读懂传说中的经典:受限玻尔兹曼机2018-05-07 机器之心选自DL4J机器之心编译参与:Nurhachu Null、思源尽管性能没有流行的生成模型好,但受限玻尔兹曼机还是很多读者都希望了解的内容。这不仅是因为...

2018-05-08 15:14:23

阅读数 512

评论数 0

TensorFlow的layer层搭建卷积神经网络(CNN),实现手写体数字识别

   目前正在学习使用TensorFlow,看到TensorFlow官方API上有一个调用layer层来搭建卷积神经网络(CNN)的例子,和我们之前调用的nn层的搭建卷积神经网络稍微有点不同。感觉layer层封装性更强,直接输入参数就可以是实现。TensorFlow官方API: TensorFlo...

2018-05-03 21:52:25

阅读数 298

评论数 0

python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结

在处理图像的时候经常是读取图片以后把图片转换为灰度图。作为一个刚入坑的小白,我在这篇博客记录了四种处理的方法。首先导入包:import numpy as np import cv2 import tensorflow as tf from PIL import Image方法一:在使用OpenCV...

2018-04-19 17:03:26

阅读数 6766

评论数 1

灰度值总结

灰度是指黑白图像中点的颜色的深度。范围一般在0~255,白色为255,黑色为0,故黑白图像也是灰度图像灰度就是没有色彩,RGB色彩分量全部相等。eg:  一个256级灰度的图象,RGB(100,100,100)就代表灰度为100,RGB(50,50,50)代表灰度为50。 彩色图象的灰度其实在转化...

2018-04-15 21:11:56

阅读数 446

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭