使用TPOT自动选择scikit-learn机器学习模型和参数

本文介绍了如何利用TPOT这一基于遗传算法的工具,自动选择和优化scikit-learn中的机器学习模型及其参数。通过一个乳腺癌数据集的例子,展示了TPOT在解决模型选择问题上的便捷性,最终得出最佳模型为随机森林。
摘要由CSDN通过智能技术生成

声明:原文地址:使用TPOT自动选择scikit-learn机器学习模型和参数,此文是本人学习原文的结果,略有改动。侵删。

在上一篇博客中我们在anacoda中安装了tpot: anacoda下安装TPOT库。有需要的可以去看一下。

正文:

scikit-learn是抽象层次很高的机器学习库,它提供了许多机器学习模型,而每个模型还有很多参数。那么问题来了,我们该怎么选择某个问题最适合使用哪个模型呢?

当然,我们一个一个尝试,或使用TPOT自动化这个过程。TPOT是基于遗传算法自动选择、优化机器学习模型和参数的工具。遗传算法常来解决优化和搜索问题,本博客就使用例子介绍一下TPOT的使用。

数据集地址:https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/

使用的数据集breast-cancer-wisconsin.data

打开以后是这个样子:

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值