目前正在学习使用TensorFlow,看到TensorFlow官方API上有一个调用layer层来搭建卷积神经网络(CNN)的例子,和我们之前调用的nn层的搭建卷积神经网络稍微有点不同。感觉layer层封装性更强,直接输入参数就可以是实现。
TensorFlow官方API: TensorFlow官方API
参考博客地址:Tensorflow and CNNs 使用tensorflow构建卷积神经网络 ,这篇博客是翻译的官方API。
代码如下:
#-*- coding: UTF-8 -*-
import numpy as np
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
def cnn_model(features,labels,mode):
#输入层:
input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])
#第一层卷积:
conv1 = tf.layers.conv2d(inputs=input_layer, #输入的张量
filters=32, #卷积核(过滤器)的数量
kernel_size=[5, 5], #卷积核的size
padding='same', #是否加padding,same和valid
activation=tf.nn.relu) #激活函数
#第一层池化:
pool1 = tf.layers.max_pooling2d(inputs=conv1, #输入的张量
pool_size=[2, 2], #池化层过滤器的size
strides=2) #池化的步长
#第二层卷积:
conv2 = tf.layers.conv2d(inputs=pool1,
filters=64,
kernel_size=[5,5],
padding='same',
activation=tf.nn.relu)
#第二层池化:
pool2 = tf.layers.max_pooling2d(inputs=conv2,
pool_size=[2,2],
strides=2)
#扁平化pool2:
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
#全连接层:
dense = tf.layers.dense(inputs=pool2_flat,
units=1024, #神经元的个数
activation=tf.nn.relu) #激活函数
dropout = tf.layers.dropout(inputs=dense, #为了改进模型,在全连接层使用dropout正则化
rate=0.4, #这里设置为0.4,表示每个神经元都有0.4的概率会在训练的过程中被舍弃.
training=mode == tf.estimator.ModeKeys.TRAIN) #采用布尔值来指定模型当前是否在训练模式下运行,只有在训练模式下,才会进行dropout
#回归层/输出层
logist = tf.layers.dense(inputs=dropout,
units=10,)
#tf.argmax(input=logist,axis=1) #输出预测的值
#tf.nn.softmax(logist,name="softmax_tensor") #属于每个类别的概率
#预测:
prediction = {
"classes":tf.argmax(input=logist, axis=1), #预测的类别(预测的值,比如值为7)
"probabilities":tf.nn.softmax(logist,name="softmax_tensor") #预测的概率,比如值为7的概率
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode,predictions=prediction)
#损失函数:
onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=10) #对lable进行 one_hot编码
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logist)
#loss = tf.losses.sparse_softmax_cross_entropy(labels=onehot_labels, logits=logist)
#训练模型
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
#评估
eval_metric_ops = {
"accuarcy:": tf.metrics.accuracy(labels=labels,
predictions=prediction["classes"])
}
return tf.estimator.EstimatorSpec(mode=mode,
loss=loss,
eval_metric_ops=eval_metric_ops)
def main():
#加载数据:
mnist = tf.contrib.learn.datasets.load_dataset("mnist")
train_data = mnist.train.images
train_labels = np.asarray(mnist.train.labels,dtype=np.int32)
eval_data = mnist.test.images
eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
#评价模型/保存模型
#model_fn:指定用于训练、评估和预测的模型函数;我们将之前创建的cnn_model作为参数
#model_dir:指定用于保存模型数据(检查点)的目录(这里,我们指定临时目录G:\PythonCode\DLself\\temp\mnist_convnet_model,
# 但可以随意更改为您选择的另一个目录)。
mnist_classifier = tf.estimator.Estimator(model_fn=cnn_model,
model_dir="G:\PythonCode\DLself\\temp\mnist_convnet_model")
#记录日志:
tensor_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensor_to_log, every_n_iter=50)
#训练模型:
train_input_fun = tf.estimator.inputs.numpy_input_fn(
x={"x":train_data},
y=train_labels,
batch_size=100, #每次训练100张图片
num_epochs=None, #模型将一直训练,直到达到指定的步数
shuffle=True #每次训练前打乱数据
)
mnist_classifier.train(input_fn=train_input_fun,
steps=20000, #训练20000次
hooks=[logging_hook])
eval_input_fun = tf.estimator.inputs.numpy_input_fn(
x={"x":eval_data},
y=eval_labels,
num_epochs=1,
shuffle=False
)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fun)
print(eval_results)
if __name__ == "__main__":
main()
tf.app.run()
代码运行结果如下:
因为训练CNN是非常耗时的,因为笔记本性能和时间关系我没有运行完程序。但是根据官方API的说法:测试数据集已经达到了97.3%的准确率。
参考博客中的程序运行结果: