Windows + Msys 下编译 TensorFlow 2.14 CC库

之前编译 TensorFlow 2.9.1 CC库成功,具体步骤请转 Windows 下编译 TensorFlow 2.9.1 CC库

但编译 TF 2.14.0 遇到了很大困难,具体过程类似前文,这里仅列出遇到的问题,有解决则给出我自己的解决方法。

安装基本工具

宁滥毋缺

pacman -S --noconfirm --needed base-devel vim tar wget unzip protobuf
 
pacman -S --noconfirm --needed \
		${MINGW_PACKAGE_PREFIX}-cmake \
		${MINGW_PACKAGE_PREFIX}-gcc \
		${MINGW_PACKAGE_PREFIX}-toolchain \
		${MINGW_PACKAGE_PREFIX}-boost \
		${MINGW_PACKAGE_PREFIX}-ccache \
		${MINGW_PACKAGE_PREFIX}-eigen3 \
		${MINGW_PACKAGE_PREFIX}-gcc-libgfortran \
        ${MINGW_PACKAGE_PREFIX}-grpc \
		${MINGW_PACKAGE_PREFIX}-gtk3 \
		${MINGW_PACKAGE_PREFIX}-julia \
        ${MINGW_PACKAGE_PREFIX}-dlfcn \
		${MINGW_PACKAGE_PREFIX}-ogre3d \
		${MINGW_PACKAGE_PREFIX}-python \
		${MINGW_PACKAGE_PREFIX}-python2 \
		${MINGW_PACKAGE_PREFIX}-python-pip \
		${MINGW_PACKAGE_PREFIX}-python-psutil \
		${MINGW_PACKAGE_PREFIX}-python-idna \
		${MINGW_PACKAGE_PREFIX}-vtk
pacman -S --noconfirm --needed \
		${MINGW_PACKAGE_PREFIX}-libpng \
		${MINGW_PACKAGE_PREFIX}-libjpeg \
		${MINGW_PACKAGE_PREFIX}-libtiff \
		${MINGW_PACKAGE_PREFIX}-libwebp \
		${MINGW_PACKAGE_PREFIX}-dlib \
		${MINGW_PACKAGE_PREFIX}-ffmpeg \
		${MINGW_PACKAGE_PREFIX}-harfbuzz \
		${MINGW_PACKAGE_PREFIX}-lapack \
		${MINGW_PACKAGE_PREFIX}-openblas \
		${MINGW_PACKAGE_PREFIX}-opencl-clhpp \
		${MINGW_PACKAGE_PREFIX}-opencl-headers \
		${MINGW_PACKAGE_PREFIX}-opencl-icd \
		${MINGW_PACKAGE_PREFIX}-openmp

pacman -U https://mirrors.tuna.tsinghua.edu.cn/msys2/mingw/x86_64/mingw-w64-x86_64-python-numpy-1.23.5-1-any.pkg.tar.zst

pacman -U http://mirrors.ustc.edu.cn/msys2/mingw/x86_64/mingw-w64-x86_64-python-setuptools-67.6.1-1-any.pkg.tar.zst \
http://mirrors.ustc.edu.cn/msys2/mingw/x86_64/mingw-w64-x86_64-python-werkzeug-2.3.7-1-any.pkg.tar.zst

安装Bazel

不同tensorflow版本对应的Bazel版本是不同的,提前确定好。

对于 tensorflow 2.14.0,下载安装 Windows 版本 bazel 6.1.2,复制到 C:/Windows/system32 目录或 D:/msys64/mingw64/bin 目录下,改名为 bazel.exe

wget https://github.com/bazelbuild/bazel/releases/download/6.1.2/bazel-6.1.2-windows-x86_64.exe

## 国内镜像
wget https://hub.nuaa.cf/bazelbuild/bazel/releases/download/6.1.2/bazel-6.1.2-windows-x86_64.exe

cp bazel-6.1.2-windows-x86_64.exe  /mingw64/bin/bazel.exe

下载 tensorflow 

git 克隆后切换到指定版本

git clone --recursive https://github.com/tensorflow/tensorflow.git
cd tensorflow
# switch to the branch you want to build
git checkout r2.14  # r1.9, r1.10, etc. 

或下载源码包并解压

wget https://github.com/tensorflow/tensorflow/archive/refs/tags/v2.14.0.zip

## 国内镜像
wget https://hub.nuaa.cf/tensorflow/tensorflow/archive/refs/tags/v2.14.0.zip

## 解压
unzip v2.14.0.zip

 进入tensorflow 目录,编译 & 安装

cd tensorflow-2.14.0

./configure  ## 和执行 python configure.py 效果一样

## tensorflow:libtensorflow_cc.so
bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package

## build install python-package
bazel-bin/tensorflow/tools/pip_package/build_pip_package package/20230912

## remove old version and install new package
pip uninstall  tensorflow
pip install package/20230912/tensorflow-*.whl

问题:

github下载超时

 将bazel脚本中 github.com链接换成国内github 镜像,加速下载,这里我使用hub.yzuu.cf。

sed -i -e 's#https:\/\/github\.com#https://hub.yzuu.cf#g' \
                   */*.bzl */*/*.bzl */*/*/*.bzl */*/*/*/*.bzl \
                   */*.py  */*/*.py  */*/*/*.py  */*/*/*/*.py

但是部分 bazel 脚本会将 github  URL 替换成 镜像站 URL。

  https://github.com/...........

   -->  https://storage.googleapis.com/mirror.tensorflow.org/github.com/..........

这会造成  https://hub.yzuu.cf/.......... 被转换成  https://storage.googleapis.com/mirror.tensorflow.org/hub.yzuu.cf/...........

所以,当发现这种错误引起的下载失败的话,再将 github镜像 url 转换回原url,继续编译。

sed -i -e 's#https\:\/\/hub\.yzuu\.cf#https://github.com#g' \
                   */*.bzl */*/*.bzl */*/*/*.bzl */*/*/*/*.bzl \
                   */*.py  */*/*.py  */*/*/*.py  */*/*/*/*.py

pip下载超时

可以看看 pip有没有设置镜像URL,如果没有,设置到镜像站,我选用清华镜像站

pip config get global.index-url
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

报错:用户没有权限

执行 os.symlink(target, link_name)时,报告用户没有权限。我即使以管理员执行 msys2也无法解决这个问题。

最后 直接用管理员账号登录,重新准备所有环境才解决

报错:Couldn't find undname.exe under。。。

一般是使用的 MSVC版本不合适,我安装 VS2019后这个问题被解决。

BAZEL_VC does not work when vs2019 and vs2022 exist on windows 11. · Issue #14232 · bazelbuild/bazel · GitHub

Auto-Configuration Error: Couldn't find undname.exe under C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\ · Issue #31608 · tensorflow/tensorflow · GitHubb

报错:fatal error C1007: 无法识别的标志“-ReducedOptimizeHugeFunctions”(在“p2”中)

 VS2015,VS2017 还不支持这个选项,一定要安装 VS2019。

(VS2022 我没有成功,保留意见)。

参考 tensorflow源码根目录配置文件.bazelrc 的说明

为了保证进入 Msys2界面后 VS2019 编译环境 正常,在~/.bashrc 中追加初始化指令,你需要修改为你机器的VS2019安装路径。

"D:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"

报错:ERROR: No matching distribution found for numpy==1.23.5

 默认版本不兼容,安装指定版本的 python-numpy

wget https://mirrors.tuna.tsinghua.edu.cn/msys2/mingw/x86_64/mingw-w64-x86_64-python-numpy-1.23.5-1-any.pkg.tar.zst
pacman -U mingw-w64-x86_64-python-numpy-1.23.5-1-any.pkg.tar.zst

指定安装包版本

wget https://mirrors.tuna.tsinghua.edu.cn/msys2/mingw/x86_64/mingw-w64-x86_64-python-psutil-5.9.5-2-any.pkg.tar.zst

wget https://mirrors.tuna.tsinghua.edu.cn/msys2/mingw/x86_64/mingw-w64-x86_64-python-idna-3.4-2-any.pkg.tar.zst

报错 : fatal error C1060: 编译器的堆空间不足

限制 bazel 占用资源数。实际使用下来效果改善不大,只能反复编译个几十遍。

bazel build --config=opt \
        --local_ram_resources=HOST_RAM*.8 \
        --local_cpu_resources=HOST_CPUS-2  \
        //tensorflow/tools/pip_package:build_pip_package

 报错 :无法打开 legalize_tf_xla_call_module_to_stablehlo_pass.obj.params

        windows下 有MAX_PATH=260 的限制,--output_base 设置编译输出路径尽量短小就好。 

试试这个 ,不行就新建个短名用户重新编译吧。

修改 mingw安装路径的 /etc/profile 文件,在前面添加强制初始化环境变量,重启mingw 环境。我实际使用的是 x,只一个字符,尽量缩短最后生成的路径长度。

USER=roe
USERNAME=roe
HOME=/home/roe

报错: 无法打开包括文件: “dirent.h”

参考: Visual studio 2019 报错没有“dirent.h”文件, 补一个 dirnet.h 文件到 VS2019 include目录

报错: 无法打开包括文件: “dlfcn.h”

 pacman -S --noconfirm --needed ${MINGW_PACKAGE_PREFIX}-dlfcn


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值