从 大数定理 到 蒙特卡洛求定低分 的推演

目标:求函数 f ( x ) f(x) f(x) 在范围 [a, b] 内的定积分 ∫ a b f ( x ) \int^b_a{f(x)} abf(x)

大数定律

大数定律告诉我们,当样本容量足够大时,样本总体的均值,收敛于样本的期望,即 E [ X ] = lim ⁡ N → ∞ 1 N ∑ i = 1 N X i E_{[X]}=\lim\limits_{N\to\infty}{1 \over N}\sum^N_{i=1}X_i E[X]=NlimN1i=1NXi

对于一个函数有,可以写成如下的形式:

E [ f ( x ) ] = lim ⁡ N → ∞ 1 N ∑ i = 1 N f ( x i ) E_{[f(x)]}=\lim\limits_{N\to\infty}{1 \over N}\sum^N_{i=1}f(x_i) E[f(x)]=NlimN1i=1Nf(xi)

将定积分 ∫ a b f ( x ) \int^b_a{f(x)} abf(x) 拆解成期望形式

概率在 [a, b] 区间均匀分布,有: ∫ a b f ( x ) = ( b − a ) ∫ a b f ( x ) 1 b − a d x \int^b_a{f(x)}=(b-a)\int^b_a{{f(x)} {1 \over{b-a}} }dx abf(x)=(ba)abf(x)ba1dx

1 b − a 1 \over{b-a} ba1 不就是样本的概率,所以每一个采样点 f ( x ) f(x) f(x) 1 b − a 1 \over{b-a} ba1 的成绩算出来,就是样本的期望

所以, ∫ a b f ( x ) \int^b_a{f(x)} abf(x) 就可以标称成样本的期望形式: ∫ a b f ( x ) = ( b − a ) E [ f ( x ) ] \int^b_a{f(x)}=(b-a)E_{[f(x)]} abf(x)=(ba)E[f(x)]

结合大数定律

结合样本期望形式,有

∫ a b f ( x ) d x = ( b − a ) lim ⁡ N → ∞ 1 N ∑ i = 1 N f ( x i ) \int^b_a{f(x)}dx=(b-a)\lim\limits_{N\to\infty}{1 \over N}\sum^N_{i=1}f(x_i) abf(x)dx=(ba)NlimN1i=1Nf(xi)

写得简单点,写成约等于的形式,有

∫ a b f ( x ) d x ≈ ( b − a ) N ∑ i = 1 N f ( x i ) \int^b_a{f(x)}dx\approx{(b-a) \over N}\sum^N_{i=1}f(x_i) abf(x)dxN(ba)i=1Nf(xi)

样本数量越多(N越大),越准确

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值