蒙特卡洛算法

蒙特卡罗方法(Monte Carlo method),也称 统计模拟方法。

蒙特卡洛方法的理论基础是大数定律。大数定律是描述相当多次数重复试验的结果的定律,在大数定理的保证下:

利用事件发生的 频率 作为事件发生的 概率 的近似值。

所以只要设计一个随机试验,使一个事件的概率与某未知数有关,然后通过重复试验,以频率近似值表示概率,即可求得该未知数的近似值。

样本数量越多,其平均就越趋近于真实值。

此种方法可以求解微分方程,求多重积分,求特征值等。




参考资料:
经典算法:蒙特卡洛方法(MCMC)
蒙特卡洛方法(入门详解)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值