文章目录
前言
Pytorch 中比较重要的是对数据的处理,其中,进行数据读取的一般有三个类:
- Dataset
- DataLoader
- DataLoaderIter
其中,这三是一个依次封装的关系:“Dataset被封装进DataLoader,DataLoader再被封装进DataLoaderIter”
Dataset
class torch.utils.data.Dataset
表示Dataset的抽象类,所有其数据集都应该继承这个类。所有子类必须继承和实现
- len()
- getitem()
两个成员函数,前者提供了数据集的大小,后者支持整数索引,范围从0到len(self)。
import torch
from torch.utils.data import Dataset
import pandas as pd
# 定义自己的类
class MyDataset(Dataset):
# 初始化
def __init__(self, file_name):
# 读入数据
self.data

本文介绍了PyTorch中数据处理的关键类Dataset和DataLoader。Dataset作为数据集的抽象类,需要实现`len()`和`getitem()`方法。DataLoader则负责批量加载数据,支持设置batch_size、是否shuffle等参数。通过DataLoader,可以方便地按批次获取数据进行训练。
最低0.47元/天 解锁文章
7万+

被折叠的 条评论
为什么被折叠?



