交叉熵、相对熵(KL散度)、JS散度和Wasserstein距离

本文详细介绍了信息熵、相对熵(KL散度)、交叉熵、JS散度以及Wasserstein距离的概念及其在机器学习中的应用。信息熵衡量随机变量的混乱程度,KL散度和交叉熵用于评估分布的差异,JS散度解决非对称问题,而Wasserstein距离即使在分布无重叠时也能有效度量距离。
摘要由CSDN通过智能技术生成

1 信息量

       任何事件都会承载着一定的信息量,包括已经发生的事件和未发生的事件,只是它们承载的信息量会有所不同。如昨天下雨这个已知事件,因为已经发生,既定事实,那么它的信息量就为0。如明天会下雨这个事件,因为未有发生,那么这个事件的信息量就大。从上面例子可以看出信息量是一个与事件发生概率相关的概念,而且可以得出,事件发生的概率越小,其信息量越大。
       假设 X X X是一个离散型随机变量,则定义事件 X = x 0 X=x_0 X=x0的信息量为:
I ( x 0 ) = − l o g ( p ( x 0 ) ) I(x_0)=-log(p(x_0)) I(x0)=log(p(x0))

2 信息熵

       如果我们把一个事件的所有可能性罗列出来,就可以求得该事件信息量的期望,信息量的期望就是信息熵,所以信息熵的公式为:
H ( x ) = − ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) H(x)=-\sum_{i=1}^np(x_i)log(p(x_i)) H(x)=i=1np(xi)log(p(xi))
       信息熵是衡量随机变量分布的混乱程度,是随机分布各事件发生的信息量的期望值,随机变量的取值个数越多,状态数也就越多,信息熵就越大,混乱程度就越大。当随机分布为均匀分布时,熵最大

3 相对熵(KL散度)

       相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度来衡量这两个分布的差异。在机器学习中,P往往用来表示样本的真实分布,Q用来表示模型所预测的分布,那么KL散度就可以计算两个分布的差异,也就是Loss,取值范围是(0,正无穷)。公式如下:
D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) q ( x i ) ) D_{KL}(p||q)=\sum_{i=1}^{n}p(x_i)log(\frac{p(x_i)}{q(x_i)}) DKL(pq)=i=1np(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值