[nlp] SimCSE 对比学习

SimCSE利用dropout生成不同embedding作为正负样本进行对比学习,无监督情况下防止语义漂移,有监督时结合NLI数据集。通过调整温度系数T优化样本,目标是增加正样本间的相似度。损失函数基于InfoNCE Loss,但使用余弦相似度代替点乘。双塔结构用于有监督学习,单塔结构则为无监督学习。
摘要由CSDN通过智能技术生成

对比学习损失,最出名的两个,一个是triplet_loss(hinge_loss),一个是 InfoNCEloss。

InfoNCEloss:用温度系数T平滑softmax,得到期望的logit分布,再使用交叉熵计算损失。

具体来说,就是在softmax时,引入温度系数T。T趋近于无穷,则趋近于均匀分布,T趋近于0,则趋近于one-hot分布。可以设置为0.05。

SimCSE(文本):

【单塔 无监督】利用同一输入每次过dropout后生成不同embedding的特性,完美规避了传统文本增强方法伴随的语义漂移问题,同一文本dropout两次得到正样本(的embedding),batch中其他文本dropout两次为负样本样本优化样本增强。

【双塔 有监督】原论文把相似当作正例,矛盾和中立当作负例。

温度系数越小,越重视困难样本。

训练目标等价于 增加正样本之间的相似度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>