天哪!用Python实现自动驾驶!

一、安装环境

gym是用于开发和比较强化学习算法的工具包,在python中安装gym库和其中子场景都较为简便。

安装gym:

pip install gym   

安装自动驾驶模块,这里使用Edouard Leurent发布在github上的包highway-env(链接:https://github.com/eleurent/highway-env):

pip install --user git+https://github.com/eleurent/highway-env   

其中包含6个场景:

  • 高速公路——“highway-v0”

  • 汇入——“merge-v0”

  • 环岛——“roundabout-v0”

  • 泊车——“parking-v0”

  • 十字路口——“intersection-v0”

  • 赛车道——“racetrack-v0”

详细文档可以参考这里:

https://highway-env.readthedocs.io/en/latest/

二、配置环境

安装好后即可在代码中进行实验(以高速公路场景为例):

import gym   import highway_env   %matplotlib inline      env = gym.make('highway-v0')   env.reset()   for _ in range(3):       action = env.action_type.actions_indexes["IDLE"]       obs, reward, done, info = env.step(action)       env.render()   

运行后会在模拟器中生成如下场景:

图片

绿色为ego vehicle env类有很多参数可以配置,具体可以参考原文档。

三、训练模型

1、数据处理

(1)state

highway-env包中没有定义传感器,车辆所有的state (observations) 都从底层代码读取,节省了许多前期的工作量。根据文档介绍,state (ovservations) 有三种输出方式:Kinematics,Grayscale Image和Occupancy grid。

Kinematics

输出V*F的矩阵,V代表需要观测的车辆数量(包括ego vehicle本身),F代表需要统计的特征数量。例:

数据生成时会默认归一化,取值范围:[100, 100, 20, 20],也可以设置ego vehicle以外的车辆属性是地图的绝对坐标还是对ego vehicle的相对坐标。

在定义环境时需要对特征的参数进行设定:

config = \       {       "observation":             {           "type": "Kinematics",           #选取5辆车进行观察(包括ego vehicle)           "vehicles_count": 5,             #共7个特征           "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"],            "features_range":                {               "x": [-100, 100],               "y": [-100, 100],               "vx": [-20, 20],               "vy": [-20, 20]               },           "absolute": False,           "order": "sorted"           },       "simulation_frequency": 8,  # [Hz]       "policy_frequency": 2,  # [Hz]       }   

Grayscale Image

生成一张W*H的灰度图像,W代表图像宽度,H代表图像高度

Occupancy grid

生成一个WHF的三维矩阵,用W*H的表格表示ego vehicle周围的车辆情况,每个格子包含F个特征。

(2) action

highway-env包中的action分为连续和离散两种。连续型action可以直接定义throttle和steering angle的值,离散型包含5个meta actions:

ACTIONS_ALL = {           0: 'LANE_LEFT',           1: 'IDLE',           2: 'LANE_RIGHT',           3: 'FASTER',           4: 'SLOWER'       }   
(3) reward

highway-env包中除了泊车场景外都采用同一个reward function:

图片

这个function只能在其源码中更改,在外层只能调整权重。(泊车场景的reward function原文档里有,懒得打公式了……)

2、搭建模型

DQN网络的结构和搭建过程已经在我另一篇文章中讨论过,所以这里不再详细解释。我采用第一种state表示方式——Kinematics进行示范。

由于state数据量较小(5辆车*7个特征),可以不考虑使用CNN,直接把二维数据的size[5,7]转成[1,35]即可,模型的输入就是35,输出是离散action数量,共5个。

import torch   import torch.nn as nn   from torch.autograd import Variable   import torch.nn.functional as F   import torch.optim as optim   import torchvision.transforms as T   from torch import FloatTensor, LongTensor, ByteTensor   from collections import namedtuple   import random    Tensor = FloatTensor      EPSILON = 0    # epsilon used for epsilon greedy approach   GAMMA = 0.9   TARGET_NETWORK_REPLACE_FREQ = 40       # How frequently target netowrk updates   MEMORY_CAPACITY = 100   BATCH_SIZE = 80   LR = 0.01         # learning rate      class DQNNet(nn.Module):       def __init__(self):           super(DQNNet,self).__init__()                             self.linear1 = nn.Linear(35,35)           self.linear2 = nn.Linear(35,5)                      def forward(self,s):           s=torch.FloatTensor(s)                   s = s.view(s.size(0),1,35)                   s = self.linear1(s)           s = self.linear2(s)           return s                                          class DQN(object):       def __init__(self):           self.net,self.target_net = DQNNet(),DQNNet()                   self.learn_step_counter = 0                 self.memory = []           self.position = 0            self.capacity = MEMORY_CAPACITY                  self.optimizer = torch.optim.Adam(self.net.parameters(), lr=LR)           self.loss_func = nn.MSELoss()          def choose_action(self,s,e):           x=np.expand_dims(s, axis=0)           if np.random.uniform() < 1-e:                 actions_value = self.net.forward(x)                           action = torch.max(actions_value,-1)[1].data.numpy()               action = action.max()                      else:                action = np.random.randint(0, 5)           return action          def push_memory(self, s, a, r, s_):           if len(self.memory) < self.capacity:               self.memory.append(None)           self.memory[self.position] = Transition(torch.unsqueeze(torch.FloatTensor(s), 0),torch.unsqueeze(torch.FloatTensor(s_), 0),\                                                   torch.from_numpy(np.array([a])),torch.from_numpy(np.array([r],dtype='float32')))#           self.position = (self.position + 1) % self.capacity                 def get_sample(self,batch_size):           sample = random.sample(self.memory,batch_size)           return sample                def learn(self):           if self.learn_step_counter % TARGET_NETWORK_REPLACE_FREQ == 0:               self.target_net.load_state_dict(self.net.state_dict())           self.learn_step_counter += 1                      transitions = self.get_sample(BATCH_SIZE)           batch = Transition(*zip(*transitions))              b_s = Variable(torch.cat(batch.state))           b_s_ = Variable(torch.cat(batch.next_state))           b_a = Variable(torch.cat(batch.action))           b_r = Variable(torch.cat(batch.reward))                               q_eval = self.net.forward(b_s).squeeze(1).gather(1,b_a.unsqueeze(1).to(torch.int64))            q_next = self.target_net.forward(b_s_).detach() #           q_target = b_r + GAMMA * q_next.squeeze(1).max(1)[0].view(BATCH_SIZE, 1).t()                      loss = self.loss_func(q_eval, q_target.t())                   self.optimizer.zero_grad() # reset the gradient to zero                   loss.backward()           self.optimizer.step() # execute back propagation for one step                  return loss   Transition = namedtuple('Transition',('state', 'next_state','action', 'reward'))   

3、运行结果

各个部分都完成之后就可以组合在一起训练模型了,流程和用CARLA差不多,就不细说了。

初始化环境(DQN的类加进去就行了):

import gym   import highway_env   from matplotlib import pyplot as plt   import numpy as np   import time   config = \       {       "observation":             {           "type": "Kinematics",           "vehicles_count": 5,           "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"],           "features_range":                {               "x": [-100, 100],               "y": [-100, 100],               "vx": [-20, 20],               "vy": [-20, 20]               },           "absolute": False,           "order": "sorted"           },       "simulation_frequency": 8,  # [Hz]       "policy_frequency": 2,  # [Hz]       }          env = gym.make("highway-v0")   env.configure(config)   

训练模型:

dqn=DQN()   count=0      reward=[]   avg_reward=0   all_reward=[]      time_=[]   all_time=[]      collision_his=[]   all_collision=[]   while True:       done = False           start_time=time.time()       s = env.reset()              while not done:           e = np.exp(-count/300)  #随机选择action的概率,随着训练次数增多逐渐降低           a = dqn.choose_action(s,e)           s_, r, done, info = env.step(a)           env.render()                      dqn.push_memory(s, a, r, s_)                      if ((dqn.position !=0)&(dqn.position % 99==0)):               loss_=dqn.learn()               count+=1               print('trained times:',count)               if (count%40==0):                   avg_reward=np.mean(reward)                   avg_time=np.mean(time_)                   collision_rate=np.mean(collision_his)                                                      all_reward.append(avg_reward)                   all_time.append(avg_time)                   all_collision.append(collision_rate)                                                      plt.plot(all_reward)                   plt.show()                   plt.plot(all_time)                   plt.show()                   plt.plot(all_collision)                   plt.show()                                      reward=[]                   time_=[]                   collision_his=[]                              s = s_           reward.append(r)                    end_time=time.time()       episode_time=end_time-start_time       time_.append(episode_time)                  is_collision=1 if info['crashed']==True else 0       collision_his.append(is_collision)   

我在代码中添加了一些画图的函数,在运行过程中就可以掌握一些关键的指标,每训练40次统计一次平均值。

平均碰撞发生率:

图片

epoch平均时长(s):

图片

平均reward:

图片

可以看出平均碰撞发生率会随训练次数增多逐渐降低,每个epoch持续的时间会逐渐延长(如果发生碰撞epoch会立刻结束)

以上就是“天哪!用Python实现自动驾驶!”的全部内容,希望对你有所帮助。

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

二、Python必备开发工具

img

三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

img

五、Python练习题

检查学习结果。

img

六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

img

最后祝大家天天进步!!

上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值