整理了27个Python人工智能库,建议收藏!

为了大家能够对人工智能常用的 Python 库有一个初步的了解,以选择能够满足自己需求的库进行学习,对目前较为常见的人工智能库进行简要全面的介绍。

1、Numpy

NumPy(Numerical Python)Python的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,Numpy底层使用C语言编写,数组中直接存储对象,而不是存储对象指针,所以其运算效率远高于纯Python代码。
我们可以在示例中对比下纯Python与使用Numpy库在计算列表sin值的速度对比:

import numpy as np   import math   import random   import time      start = time.time()   for i in range(10):       list_1 = list(range(1,10000))       for j in range(len(list_1)):           list_1[j] = math.sin(list_1[j])   print("使用纯Python用时{}s".format(time.time()-start))      start = time.time()   for i in range(10):       list_1 = np.array(np.arange(1,10000))       list_1 = np.sin(list_1)   print("使用Numpy用时{}s".format(time.time()-start))   

从如下运行结果,可以看到使用 Numpy 库的速度快于纯 Python 编写的代码:

使用纯Python用时0.017444372177124023s   使用Numpy用时0.001619577407836914s   
2、OpenCV

OpenCV 是一个的跨平台计算机视觉库,可以运行在 Linux、Windows 和 Mac OS 操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时也提供了 Python 接口,实现了图像处理和计算机视觉方面的很多通用算法。
下面代码尝试使用一些简单的滤镜,包括图片的平滑处理、高斯模糊等:

import numpy as np   import cv2 as cv   from matplotlib import pyplot as plt   img = cv.imread('h89817032p0.png')   kernel = np.ones((5,5),np.float32)/25   dst = cv.filter2D(img,-1,kernel)   blur_1 = cv.GaussianBlur(img,(5,5),0)   blur_2 = cv.bilateralFilter(img,9,75,75)   plt.figure(figsize=(10,10))   plt.subplot(221),plt.imshow(img[:,:,::-1]),plt.title('Original')   plt.xticks([]), plt.yticks([])   plt.subplot(222),plt.imshow(dst[:,:,::-1]),plt.title('Averaging')   plt.xticks([]), plt.yticks([])   plt.subplot(223),plt.imshow(blur_1[:,:,::-1]),plt.title('Gaussian')   plt.xticks([]), plt.yticks([])   plt.subplot(224),plt.imshow(blur_1[:,:,::-1]),plt.title('Bilateral')   plt.xticks([]), plt.yticks([])   plt.show()   

OpenCV

3、Scikit-image

scikit-image是基于scipy的图像处理库,它将图片作为numpy数组进行处理。
例如,可以利用scikit-image改变图片比例,scikit-image提供了rescaleresize以及downscale_local_mean等函数。

from skimage import data, color, io   from skimage.transform import rescale, resize, downscale_local_mean      image = color.rgb2gray(io.imread('h89817032p0.png'))      image_rescaled = rescale(image, 0.25, anti_aliasing=False)   image_resized = resize(image, (image.shape[0] // 4, image.shape[1] // 4),                          anti_aliasing=True)   image_downscaled = downscale_local_mean(image, (4, 3))   plt.figure(figsize=(20,20))   plt.subplot(221),plt.imshow(image, cmap='gray'),plt.title('Original')   plt.xticks([]), plt.yticks([])   plt.subplot(222),plt.imshow(image_rescaled, cmap='gray'),plt.title('Rescaled')   plt.xticks([]), plt.yticks([])   plt.subplot(223),plt.imshow(image_resized, cmap='gray'),plt.title('Resized')   plt.xticks([]), plt.yticks([])   plt.subplot(224),plt.imshow(image_downscaled, cmap='gray'),plt.title('Downscaled')   plt.xticks([]), plt.yticks([])   plt.show()   

Scikit-image

4、PIL

Python Imaging Library(PIL) 已经成为 Python 事实上的图像处理标准库了,这是由于,PIL 功能非常强大,但API却非常简单易用。
但是由于PIL仅支持到 Python 2.7,再加上年久失修,于是一群志愿者在 PIL 的基础上创建了兼容的版本,名字叫 Pillow,支持最新 Python 3.x,又加入了许多新特性,因此,我们可以跳过 PIL,直接安装使用 Pillow

5、Pillow

使用 Pillow 生成字母验证码图片:

from PIL import Image, ImageDraw, ImageFont, ImageFilter      import random      # 随机字母:   def rndChar():       return chr(random.randint(65, 90))      # 随机颜色1:   def rndColor():       return (random.randint(64, 255), random.randint(64, 255), random.randint(64, 255))      # 随机颜色2:   def rndColor2():       return (random.randint(32, 127), random.randint(32, 127), random.randint(32, 127))      # 240 x 60:   width = 60 * 6   height = 60 * 6   image = Image.new('RGB', (width, height), (255, 255, 255))   # 创建Font对象:   font = ImageFont.truetype('/usr/share/fonts/wps-office/simhei.ttf', 60)   # 创建Draw对象:   draw = ImageDraw.Draw(image)   # 填充每个像素:   for x in range(width):       for y in range(height):           draw.point((x, y), fill=rndColor())   # 输出文字:   for t in range(6):       draw.text((60 * t + 10, 150), rndChar(), font=font, fill=rndColor2())   # 模糊:   image = image.filter(ImageFilter.BLUR)   image.save('code.jpg', 'jpeg')   

验证码

6、SimpleCV

SimpleCV 是一个用于构建计算机视觉应用程序的开源框架。使用它,可以访问高性能的计算机视觉库,如 OpenCV,而不必首先了解位深度、文件格式、颜色空间、缓冲区管理、特征值或矩阵等术语。但其对于 Python3 的支持很差很差,在 Python3.7 中使用如下代码:

from SimpleCV import Image, Color, Display   # load an image from imgur   img = Image('http://i.imgur.com/lfAeZ4n.png')   # use a keypoint detector to find areas of interest   feats = img.findKeypoints()   # draw the list of keypoints   feats.draw(color=Color.RED)   # show the  resulting image.    img.show()   # apply the stuff we found to the image.   output = img.applyLayers()   # save the results.   output.save('juniperfeats.png')   

会报如下错误,因此不建议在 Python3 中使用:

SyntaxError: Missing parentheses in call to 'print'. Did you mean print('unit test')?   
7、Mahotas

Mahotas 是一个快速计算机视觉算法库,其构建在 Numpy 之上,目前拥有超过100种图像处理和计算机视觉功能,并在不断增长。
使用 Mahotas 加载图像,并对像素进行操作:

import numpy as np   import mahotas   import mahotas.demos      from mahotas.thresholding import soft_threshold   from matplotlib import pyplot as plt   from os import path   f = mahotas.demos.load('lena', as_grey=True)   f = f[128:,128:]   plt.gray()   # Show the data:   print("Fraction of zeros in original image: {0}".format(np.mean(f==0)))   plt.imshow(f)   plt.show()   

Mahotas

8、Ilastik

Ilastik 能够给用户提供良好的基于机器学习的生物信息图像分析服务,利用机器学习算法,轻松地分割,分类,跟踪和计数细胞或其他实验数据。大多数操作都是交互式的,并不需要机器学习专业知识。

9、Scikit-learn

Scikit-learn 是针对 Python 编程语言的免费软件机器学习库。它具有各种分类,回归和聚类算法,包括支持向量机,随机森林,梯度提升,k均值和 DBSCAN 等多种机器学习算法。
使用Scikit-learn实现KMeans算法:

import time      import numpy as np   import matplotlib.pyplot as plt      from sklearn.cluster import MiniBatchKMeans, KMeans   from sklearn.metrics.pairwise import pairwise_distances_argmin   from sklearn.datasets import make_blobs      # Generate sample data   np.random.seed(0)      batch_size = 45   centers = [[1, 1], [-1, -1], [1, -1]]   n_clusters = len(centers)   X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7)      # Compute clustering with Means      k_means = KMeans(init='k-means++', n_clusters=3, n_init=10)   t0 = time.time()   k_means.fit(X)   t_batch = time.time() - t0      # Compute clustering with MiniBatchKMeans      mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size,                         n_init=10, max_no_improvement=10, verbose=0)   t0 = time.time()   mbk.fit(X)   t_mini_batch = time.time() - t0      # Plot result   fig = plt.figure(figsize=(8, 3))   fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)   colors = ['#4EACC5', '#FF9C34', '#4E9A06']      # We want to have the same colors for the same cluster from the   # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per   # closest one.   k_means_cluster_centers = k_means.cluster_centers_   order = pairwise_distances_argmin(k_means.cluster_centers_,                                     mbk.cluster_centers_)   mbk_means_cluster_centers = mbk.cluster_centers_[order]      k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers)   mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers)      # KMeans   for k, col in zip(range(n_clusters), colors):       my_members = k_means_labels == k       cluster_center = k_means_cluster_centers[k]       plt.plot(X[my_members, 0], X[my_members, 1], 'w',               markerfacecolor=col, marker='.')       plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,               markeredgecolor='k', markersize=6)   plt.title('KMeans')   plt.xticks(())   plt.yticks(())      plt.show()

KMeans

10、SciPy

SciPy 库提供了许多用户友好和高效的数值计算,如数值积分、插值、优化、线性代数等。
SciPy 库定义了许多数学物理的特殊函数,包括椭圆函数、贝塞尔函数、伽马函数、贝塔函数、超几何函数、抛物线圆柱函数等等。

from scipy import special   import matplotlib.pyplot as plt   import numpy as np      def drumhead_height(n, k, distance, angle, t):       kth_zero = special.jn_zeros(n, k)[-1]       return np.cos(t) * np.cos(n*angle) * special.jn(n, distance*kth_zero)      theta = np.r_[0:2*np.pi:50j]   radius = np.r_[0:1:50j]   x = np.array([r * np.cos(theta) for r in radius])   y = np.array([r * np.sin(theta) for r in radius])   z = np.array([drumhead_height(1, 1, r, theta, 0.5) for r in radius])         fig = plt.figure()   ax = fig.add_axes(rect=(0, 0.05, 0.95, 0.95), projection='3d')   ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap='RdBu_r', vmin=-0.5, vmax=0.5)   ax.set_xlabel('X')   ax.set_ylabel('Y')   ax.set_xticks(np.arange(-1, 1.1, 0.5))   ax.set_yticks(np.arange(-1, 1.1, 0.5))   ax.set_zlabel('Z')   plt.show()   

SciPy

11、NLTK

NLTK 是构建Python程序以处理自然语言的库。它为50多个语料库和词汇资源(如 WordNet )提供了易于使用的接口,以及一套用于分类、分词、词干、标记、解析和语义推理的文本处理库、工业级自然语言处理 (Natural Language Processing, NLP) 库的包装器。
NLTK被称为 “a wonderful tool for teaching, and working in, computational linguistics using Python”

import nltk   from nltk.corpus import treebank      # 首次使用需要下载   nltk.download('punkt')   nltk.download('averaged_perceptron_tagger')   nltk.download('maxent_ne_chunker')   nltk.download('words')   nltk.download('treebank')      sentence = """At eight o'clock on Thursday morning Arthur didn't feel very good."""   # Tokenize   tokens = nltk.word_tokenize(sentence)   tagged = nltk.pos_tag(tokens)      # Identify named entities   entities = nltk.chunk.ne_chunk(tagged)      # Display a parse tree   t = treebank.parsed_sents('wsj_0001.mrg')[0]   t.draw()   

NLTK

12、spaCy

spaCy 是一个免费的开源库,用于 Python 中的高级 NLP。它可以用于构建处理大量文本的应用程序;也可以用来构建信息提取或自然语言理解系统,或者对文本进行预处理以进行深度学习。

  `import spacy        texts = [         "Net income was $9.4 million compared to the prior year of $2.7 million.",         "Revenue exceeded twelve billion dollars, with a loss of $1b.",     ]        nlp = spacy.load("en_core_web_sm")     for doc in nlp.pipe(texts, disable=["tok2vec", "tagger", "parser", "attribute_ruler", "lemmatizer"]):         # Do something with the doc here         print([(ent.text, ent.label_) for ent in doc.ents])`

nlp.pipe 生成 Doc 对象,因此我们可以对它们进行迭代并访问命名实体预测:

[('$9.4 million', 'MONEY'), ('the prior year', 'DATE'), ('$2.7 million', 'MONEY')]   [('twelve billion dollars', 'MONEY'), ('1b', 'MONEY')]   
13、LibROSA

librosa 是一个用于音乐和音频分析的 Python 库,它提供了创建音乐信息检索系统所必需的功能和函数。

`# Beat tracking example   import librosa      # 1. Get the file path to an included audio example   filename = librosa.example('nutcracker')      # 2. Load the audio as a waveform `y`   #    Store the sampling rate as `sr`   y, sr = librosa.load(filename)      # 3. Run the default beat tracker   tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)   print('Estimated tempo: {:.2f} beats per minute'.format(tempo))      # 4. Convert the frame indices of beat events into timestamps   beat_times = librosa.frames_to_time(beat_frames, sr=sr)   `
14、Pandas

Pandas 是一个快速、强大、灵活且易于使用的开源数据分析和操作工具, Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据,可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。

import matplotlib.pyplot as plt   import pandas as pd   import numpy as np      ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))   ts = ts.cumsum()      df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list("ABCD"))   df = df.cumsum()   df.plot()   plt.show()   

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Pandas

15、Matplotlib

Matplotlib 是Python的绘图库,它提供了一整套和 matlab 相似的命令 API,可以生成出版质量级别的精美图形,Matplotlib 使绘图变得非常简单,在易用性和性能间取得了优异的平衡。
使用 Matplotlib 绘制多曲线图:

# plot_multi_curve.py   import numpy as np   import matplotlib.pyplot as plt   x = np.linspace(0.1, 2 * np.pi, 100)   y_1 = x   y_2 = np.square(x)   y_3 = np.log(x)   y_4 = np.sin(x)   plt.plot(x,y_1)   plt.plot(x,y_2)   plt.plot(x,y_3)   plt.plot(x,y_4)   plt.show()   

Matplotlib

16、Seaborn

Seaborn 是在 Matplotlib 的基础上进行了更高级的API封装的Python数据可视化库,从而使得作图更加容易,应该把 Seaborn 视为 Matplotlib 的补充,而不是替代物。

import seaborn as sns   import matplotlib.pyplot as plt   sns.set_theme(style="ticks")      df = sns.load_dataset("penguins")   sns.pairplot(df, hue="species")   plt.show()   

seaborn

17、Orange

Orange 是一个开源的数据挖掘和机器学习软件,提供了一系列的数据探索、可视化、预处理以及建模组件。Orange 拥有漂亮直观的交互式用户界面,非常适合新手进行探索性数据分析和可视化展示;同时高级用户也可以将其作为 Python 的一个编程模块进行数据操作和组件开发。
使用 pip 即可安装 Orange,好评~

$ pip install orange3   

安装完成后,在命令行输入 orange-canvas 命令即可启动 Orange 图形界面:

$ orange-canvas   

启动完成后,即可看到 Orange 图形界面,进行各种操作。

Orange

18、PyBrain

PyBrainPython 的模块化机器学习库。它的目标是为机器学习任务和各种预定义的环境提供灵活、易于使用且强大的算法来测试和比较算法。PyBrainPython-Based Reinforcement Learning, Artificial Intelligence and Neural Network Library 的缩写。
我们将利用一个简单的例子来展示 PyBrain 的用法,构建一个多层感知器 (Multi Layer Perceptron, MLP)。
首先,我们创建一个新的前馈网络对象:

from pybrain.structure import FeedForwardNetwork   n = FeedForwardNetwork()   

接下来,构建输入、隐藏和输出层:

from pybrain.structure import LinearLayer, SigmoidLayer      inLayer = LinearLayer(2)   hiddenLayer = SigmoidLayer(3)   outLayer = LinearLayer(1)   

为了使用所构建的层,必须将它们添加到网络中:

n.addInputModule(inLayer)   n.addModule(hiddenLayer)   n.addOutputModule(outLayer)   

可以添加多个输入和输出模块。为了向前计算和反向误差传播,网络必须知道哪些层是输入、哪些层是输出。
这就需要明确确定它们应该如何连接。为此,我们使用最常见的连接类型,全连接层,由 FullConnection 类实现:

from pybrain.structure import FullConnection   in_to_hidden = FullConnection(inLayer, hiddenLayer)   hidden_to_out = FullConnection(hiddenLayer, outLayer)   

与层一样,我们必须明确地将它们添加到网络中:

n.addConnection(in_to_hidden)   n.addConnection(hidden_to_out)   

所有元素现在都已准备就位,最后,我们需要调用.sortModules()方法使MLP可用:

n.sortModules()   

这个调用会执行一些内部初始化,这在使用网络之前是必要的。

19、Milk

MILK(MACHINE LEARNING TOOLKIT) 是 Python 语言的机器学习工具包。它主要是包含许多分类器比如 SVMS、K-NN、随机森林以及决策树中使用监督分类法,它还可执行特征选择,可以形成不同的例如无监督学习、密切关系传播和由 MILK 支持的 K-means 聚类等分类系统。
使用 MILK 训练一个分类器:

import numpy as np   import milk   features = np.random.rand(100,10)   labels = np.zeros(100)   features[50:] += .5   labels[50:] = 1   learner = milk.defaultclassifier()   model = learner.train(features, labels)      # Now you can use the model on new examples:   example = np.random.rand(10)   print(model.apply(example))   example2 = np.random.rand(10)   example2 += .5   print(model.apply(example2))   
20、TensorFlow

TensorFlow 是一个端到端开源机器学习平台。它拥有一个全面而灵活的生态系统,一般可以将其分为 TensorFlow1.x 和 TensorFlow2.x,TensorFlow1.x 与 TensorFlow2.x 的主要区别在于 TF1.x 使用静态图而 TF2.x 使用Eager Mode动态图。
这里主要使用TensorFlow2.x作为示例,展示在 TensorFlow2.x 中构建卷积神经网络 (Convolutional Neural Network, CNN)。

import tensorflow as tf      from tensorflow.keras import datasets, layers, models      # 数据加载   (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()      # 数据预处理   train_images, test_images = train_images / 255.0, test_images / 255.0      # 模型构建   model = models.Sequential()   model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))   model.add(layers.MaxPooling2D((2, 2)))   model.add(layers.Conv2D(64, (3, 3), activation='relu'))   model.add(layers.MaxPooling2D((2, 2)))   model.add(layers.Conv2D(64, (3, 3), activation='relu'))   model.add(layers.Flatten())   model.add(layers.Dense(64, activation='relu'))   model.add(layers.Dense(10))      # 模型编译与训练   model.compile(optimizer='adam',                 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),                 metrics=['accuracy'])   history = model.fit(train_images, train_labels, epochs=10,                        validation_data=(test_images, test_labels))
21、PyTorch

PyTorch 的前身是 Torch,其底层和 Torch 框架一样,但是使用 Python 重新写了很多内容,不仅更加灵活,支持动态图,而且提供了 Python 接口。

# 导入库   import torch   from torch import nn   from torch.utils.data import DataLoader   from torchvision import datasets   from torchvision.transforms import ToTensor, Lambda, Compose   import matplotlib.pyplot as plt      # 模型构建   device = "cuda" if torch.cuda.is_available() else "cpu"   print("Using {} device".format(device))      # Define model   class NeuralNetwork(nn.Module):       def __init__(self):           super(NeuralNetwork, self).__init__()           self.flatten = nn.Flatten()           self.linear_relu_stack = nn.Sequential(               nn.Linear(28*28, 512),               nn.ReLU(),               nn.Linear(512, 512),               nn.ReLU(),               nn.Linear(512, 10),               nn.ReLU()           )          def forward(self, x):           x = self.flatten(x)           logits = self.linear_relu_stack(x)           return logits      model = NeuralNetwork().to(device)      # 损失函数和优化器   loss_fn = nn.CrossEntropyLoss()   optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)      # 模型训练   def train(dataloader, model, loss_fn, optimizer):       size = len(dataloader.dataset)       for batch, (X, y) in enumerate(dataloader):           X, y = X.to(device), y.to(device)              # Compute prediction error           pred = model(X)           loss = loss_fn(pred, y)              # Backpropagation           optimizer.zero_grad()           loss.backward()           optimizer.step()              if batch % 100 == 0:               loss, current = loss.item(), batch * len(X)               print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")   
22、Theano

Theano 是一个 Python 库,它允许定义、优化和有效地计算涉及多维数组的数学表达式,建在 NumPy 之上。
Theano 中实现计算雅可比矩阵:

import theano   import theano.tensor as T   x = T.dvector('x')   y = x ** 2   J, updates = theano.scan(lambda i, y,x : T.grad(y[i], x), sequences=T.arange(y.shape[0]), non_sequences=[y,x])   f = theano.function([x], J, updates=updates)   f([4, 4])   
23、Keras

Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行。Keras 的开发重点是支持快速的实验,能够以最小的时延把想法转换为实验结果。

`from keras.models import Sequential   from keras.layers import Dense      # 模型构建   model = Sequential()   model.add(Dense(units=64, activation='relu', input_dim=100))   model.add(Dense(units=10, activation='softmax'))      # 模型编译与训练   model.compile(loss='categorical_crossentropy',                 optimizer='sgd',                 metrics=['accuracy'])   model.fit(x_train, y_train, epochs=5, batch_size=32)`         
24、Caffe

在 Caffe2 官方网站上,这样说道:Caffe2 现在是 PyTorch 的一部分。虽然这些 api 将继续工作,但鼓励使用 PyTorch api。

25、MXNet

MXNet 是一款设计为效率和灵活性的深度学习框架。它允许混合符号编程和命令式编程,从而最大限度提高效率和生产力。
使用 MXNet 构建手写数字识别模型:

import mxnet as mx   from mxnet import gluon   from mxnet.gluon import nn   from mxnet import autograd as ag   import mxnet.ndarray as F      # 数据加载   mnist = mx.test_utils.get_mnist()   batch_size = 100   train_data = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], batch_size, shuffle=True)   val_data = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size)      # CNN模型   class Net(gluon.Block):       def __init__(self, **kwargs):           super(Net, self).__init__(**kwargs)           self.conv1 = nn.Conv2D(20, kernel_size=(5,5))           self.pool1 = nn.MaxPool2D(pool_size=(2,2), strides = (2,2))           self.conv2 = nn.Conv2D(50, kernel_size=(5,5))           self.pool2 = nn.MaxPool2D(pool_size=(2,2), strides = (2,2))           self.fc1 = nn.Dense(500)           self.fc2 = nn.Dense(10)          def forward(self, x):           x = self.pool1(F.tanh(self.conv1(x)))           x = self.pool2(F.tanh(self.conv2(x)))           # 0 means copy over size from corresponding dimension.           # -1 means infer size from the rest of dimensions.           x = x.reshape((0, -1))           x = F.tanh(self.fc1(x))           x = F.tanh(self.fc2(x))           return x   net = Net()   # 初始化与优化器定义   # set the context on GPU is available otherwise CPU   ctx = [mx.gpu() if mx.test_utils.list_gpus() else mx.cpu()]   net.initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)   trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.03})      # 模型训练   # Use Accuracy as the evaluation metric.   metric = mx.metric.Accuracy()   softmax_cross_entropy_loss = gluon.loss.SoftmaxCrossEntropyLoss()      for i in range(epoch):       # Reset the train data iterator.       train_data.reset()       for batch in train_data:           data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0)           label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)           outputs = []           # Inside training scope           with ag.record():               for x, y in zip(data, label):                   z = net(x)                   # Computes softmax cross entropy loss.                   loss = softmax_cross_entropy_loss(z, y)                   # Backpropogate the error for one iteration.                   loss.backward()                   outputs.append(z)           metric.update(label, outputs)           trainer.step(batch.data[0].shape[0])       # Gets the evaluation result.       name, acc = metric.get()       # Reset evaluation result to initial state.       metric.reset()       print('training acc at epoch %d: %s=%f'%(i, name, acc))   
26、PaddlePaddle

飞桨 (PaddlePaddle) 以百度多年的深度学习技术研究和业务应用为基础,集深度学习核心训练和推理框架、基础模型库、端到端开发套件、丰富的工具组件于一体。是中国首个自主研发、功能完备、开源开放的产业级深度学习平台。
使用 PaddlePaddle 实现 LeNtet5

# 导入需要的包   import paddle   import numpy as np   from paddle.nn import Conv2D, MaxPool2D, Linear      ## 组网   import paddle.nn.functional as F      # 定义 LeNet 网络结构   class LeNet(paddle.nn.Layer):       def __init__(self, num_classes=1):           super(LeNet, self).__init__()           # 创建卷积和池化层           # 创建第1个卷积层           self.conv1 = Conv2D(in_channels=1, out_channels=6, kernel_size=5)           self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)           # 尺寸的逻辑:池化层未改变通道数;当前通道数为6           # 创建第2个卷积层           self.conv2 = Conv2D(in_channels=6, out_channels=16, kernel_size=5)           self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)           # 创建第3个卷积层           self.conv3 = Conv2D(in_channels=16, out_channels=120, kernel_size=4)           # 尺寸的逻辑:输入层将数据拉平[B,C,H,W] -> [B,C*H*W]           # 输入size是[28,28],经过三次卷积和两次池化之后,C*H*W等于120           self.fc1 = Linear(in_features=120, out_features=64)           # 创建全连接层,第一个全连接层的输出神经元个数为64, 第二个全连接层输出神经元个数为分类标签的类别数           self.fc2 = Linear(in_features=64, out_features=num_classes)       # 网络的前向计算过程       def forward(self, x):           x = self.conv1(x)           # 每个卷积层使用Sigmoid激活函数,后面跟着一个2x2的池化           x = F.sigmoid(x)           x = self.max_pool1(x)           x = F.sigmoid(x)           x = self.conv2(x)           x = self.max_pool2(x)           x = self.conv3(x)           # 尺寸的逻辑:输入层将数据拉平[B,C,H,W] -> [B,C*H*W]           x = paddle.reshape(x, [x.shape[0], -1])           x = self.fc1(x)           x = F.sigmoid(x)           x = self.fc2(x)           return x   
27、CNTK

CNTK(Cognitive Toolkit) 是一个深度学习工具包,通过有向图将神经网络描述为一系列计算步骤。在这个有向图中,叶节点表示输入值或网络参数,而其他节点表示对其输入的矩阵运算。CNTK 可以轻松地实现和组合流行的模型类型,如 CNN 等。
CNTK 用网络描述语言 (network description language, NDL) 描述一个神经网络。简单的说,要描述输入的 feature,输入的 label,一些参数,参数和输入之间的计算关系,以及目标节点是什么。

`NDLNetworkBuilder=[              run=ndlLR              ndlLR=[         # sample and label dimensions         SDim=$dimension$         LDim=1                features=Input(SDim, 1)         labels=Input(LDim, 1)                # parameters to learn         B0 = Parameter(4)          W0 = Parameter(4, SDim)                           B = Parameter(LDim)         W = Parameter(LDim, 4)                # operations         t0 = Times(W0, features)         z0 = Plus(t0, B0)         s0 = Sigmoid(z0)                     t = Times(W, s0)         z = Plus(t, B)         s = Sigmoid(z)                    LR = Logistic(labels, s)         EP = SquareError(labels, s)                # root nodes         FeatureNodes=(features)         LabelNodes=(labels)         CriteriaNodes=(LR)         EvalNodes=(EP)         OutputNodes=(s,t,z,s0,W0)       ]`   


  • 12
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值