简单的用Python采集下微博评论,制作可视化词云图

简单的用Python来获取微博评论,制作词云图。

首先准备环境模块

环境使用

  • Python 3.8或以上版本即可
  • Pycharm 任意版本

模块使用


import requests 
import wordcloud 
import jieba  

以上三个模块都需要安装,直接pip install 加上模块名安装即可。

爬虫基本流程

一. 数据来源分析

  1. 明确需求: 明确采集的网站以及数据内容
    - 网址: https://weibo.com/2803301701/NxcPMvW2l
    - 数据: 评论内容
  2. 抓包分析: 通过开发者工具进行抓包
    - 打开开发者工具: F12
    - 刷新网页
    - 通过关键字查找对应的数据
    关键字: 评论的内容
    数据包地址: https://weibo.com/ajax/statuses/buildComments?is_reload=1&id=4979141627611265&is_show_bulletin=2&is_mix=0&count=10&uid=2803301701&fetch_level=0&locale=zh-CN

二. 代码实现步骤

  1. 发送请求 -> 模拟浏览器对于url地址发送请求
  2. 获取数据 -> 获取服务器返回响应数据
  3. 解析数据 -> 提取评论内容
  4. 保存数据 -> 保存本地文件 (文本 csv Excel 数据库)

代码展示

数据采集部分

1、发送请求 -> 模拟浏览器对于url地址发送请求


# 模拟浏览器
headers = {
    # Referer 防盗链
    'Referer':'https://weibo.com/2803301701/NxcPMvW2l',
    # User-Agent 用户代理
    'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'
}

# 请求网址
url = 'https://weibo.com/ajax/statuses/buildComments'
# 请求参数
data = {
    'is_reload': '1',
    'id': '4979141627611265',
    'is_show_bulletin': '2',
    'is_mix': '0',
    'max_id': max_id,
    'uid': '2803301701',
    'fetch_level': '0',
    'locale': 'zh-CN',
}
# 发送请求
response = requests.get(url=url, params=data, headers=headers)

2、获取数据 -> 获取服务器返回响应数据


json_data = response.json()
print(json_data)

3、解析数据 -> 提取评论内容


# 提取评论所在列表
content_list = json_data['data']
# for循环遍历, 提取列表里面元素
for index in content_list:
    content = index['text_raw']
    print(content)

4、保存数据

保存文本


with open('data.txt', mode='a', encoding='utf-8') as f:
    f.write(content)
    f.write('\n')
print(content)

保存表格


    with open('data.txt', mode='a', encoding='utf-8') as f:
        f.write(content)
        f.write('\n')
    print(content)

df = pd.DataFrame(lis)
df.to_excel(excel_writer:'data.xlsx', index=False)

可视化部分


# 导入结巴分词
import jieba
# 导入词云图模块
import wordcloud

"""词云分析"""
# 读取文件内容
f = open('data.txt', encoding='utf-8').read()
# 分词
txt = jieba.lcut(f)
# 把列表合并成字符串
string = ' '.join(txt)
# 制作词云图配置
wc = wordcloud.WordCloud(
    font_path='msyh.ttc',
    width=1000,  # 宽
    height=700, # 高
    background_color='white', # 背景颜色 默认黑色
)
# 导入内容
wc.generate(string)
wc.to_file('词云_3.png')
print(txt)

词云图效果展示

图片

好了,本次分享就结束了,下次再见!

学习资源推荐
除了上述分享,学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!

👉Python所有方向的学习路线👈

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)

在这里插入图片描述
👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python70个实战练手案例&源码👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉Python大厂面试资料👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

在这里插入图片描述

👉Python副业兼职路线&方法👈

学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。

在这里插入图片描述

👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以V扫描下方二维码联系领取
保证100%免费

引用\[1\]:3.2.3 WordCloud 准备词云(使用爬取的book.db文件的instroduction字段进行分析) #准备词云所需的文字(词) con = sqlite3.connect('book.db') cur = con.cursor() sql = 'select instroduction from book250' data = cur.execute(sql) text = "" for item in data: text = text + item\[0\] cur.close() con.close() #分词 cut = jieba.cut(text) string = ' '.join(cut) print(len(string)) #生成图片 img = Image.open(r'.\static\assets\img\tree.jpg') #打开遮罩图片 img_array = np.array(img) #将图片转换为数组 wc = WordCloud( background_color='white', mask=img_array, font_path="msyh.ttc" # 生成字体 ) wc.generate_from_text(string) #绘制图片 fig = plt.figure(1) plt.imshow(wc) plt.axis('off') #是否显示坐标轴 plt.show() #显示生成词云图片 问题: python爬虫微博数据可视化,词云 回答: 要实现python爬虫微博数据可视化生成词云,你可以按照以下步骤进行操作。首先,你需要使用爬虫技术获取微博数据。然后,将获取到的微博文本进行分词处理,可以使用jieba库进行分词。接下来,将分词后的文本转换为字符串,并使用WordCloud库生成词云图。你可以选择一个合适的背景图片作为词云的形状,并设置字体等参数。最后,使用matplotlib库显示生成词云图。这样就可以实现python爬虫微博数据可视化生成词云了。 #### 引用[.reference_title] - *1* [Python爬虫数据可视化之词云](https://blog.csdn.net/qq_55054495/article/details/119828798)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [python 爬虫与数据可视化](https://blog.csdn.net/kair_/article/details/107201859)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [python 爬虫及数据可视化展示](https://blog.csdn.net/ou_shen_xian/article/details/122874854)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值