一、Stable Diffusion概述
Stable Diffusion是一种基于扩散模型的图像生成技术,广泛应用于AI绘画领域。通过合理使用提示词,用户可以精确控制生成图像的内容和风格。
本文将详细讲解Stable Diffusion的提示词语法及其使用方法,帮助您更好地掌握这项技术。
提示词插件,提示词库,可以扫描下方,免费获取
二、提示词书写格式
提示词公式
在使用Stable Diffusion进行图像生成时,不同的镜头和视角会极大地影响生成图像的效果。以下是详细的镜头和视角提示词及其书写格式。
长度与格式
-
提示词右上解格式为:当前单词数量/总单词数量;总单词数量并不是固定的,可以自动扩充长度。但按照最佳实战,提示词单词最好不要超过75个单词,太长的提示词,后面的提示词几乎不起作用。
-
提示词中单词以英文逗号分隔,在前的单词权重越大,即对生成的图片影响越大
-
提示词中最好使用短句,不要使用一长句
镜头
-
远景镜头 (long shot 或 wide shot):
-
- 表现场景和人物的空间关系,画面以景为主,以人为辅,适用于表现画面主题和环境。
- 示例提示词:
a beautiful landscape, long shot
或a bustling cityscape, wide shot
-
全景镜头 (full shot 或 wide shot):
-
- 展示人物全身或较小场景的全貌,具有整体氛围,突出人物肢体和环境。
- 示例提示词:
a person standing in a park, full shot
或a group of friends at the beach, wide shot
-
中景镜头 (medium shot):
-
- 拍摄半身,展现肢体和主题细节,体现画面的质感和高级感。
- 示例提示词:
a woman working at her desk, medium shot
或a man holding a book, medium shot
-
近景镜头 (close-up):
-
- 拍摄胸部以上,弱化场景,表达人物细节和情绪。
- 示例提示词:
a child's face with a smile, close-up
或a thoughtful expression, close-up
-
特写镜头 (extreme close-up):
-
- 拍摄脸部和局部,表达人物微表情和内心世界。
- 示例提示词:
an eye with intricate details, extreme close-up
或a hand holding a delicate object, extreme close-up
视角
-
动态视角 (dynamic angle):
-
- 提供一种活跃和生动的视角,常用于捕捉运动中的物体或强调动作感。
- 示例提示词:
a dynamic angle of a running athlete
-
从上面 (from above):
-
- 俯视图,提供一种从高处向下看的视角,适用于展示大范围的场景或强调高度差。
- 示例提示词:
a bustling market seen from above
-
从下面 (from below):
-
- 仰视图,提供一种从低处向上看的视角,适用于突出建筑物的高度或增加视觉冲击力。
- 示例提示词:
a towering building viewed from below
-
广角镜头 (wide shot):
-
- 提供广阔的视野,适用于展示大场景或宽广的环境。
- 示例提示词:
a vast landscape captured with a wide shot
-
鸟瞰图 (Aerial View):
-
- 从空中俯瞰,展示地面的大范围场景,适用于描绘城市或自然景观。
- 示例提示词:
a cityscape from an aerial view
** **
三、提示词语法详解
Stable Diffusion提示词支持多种表达方式,包括英语单词、短语、自然语言、颜文字、emoji表情以及一些日语符号。
- 权重调整
使用括号可以手动调整提示词的权重:
- (提示词):圆括号每层增加1.1倍
- {提示词}:花括号每层增加1.05倍
- [提示词]:方括号每层降低1.1倍
例如:monkey,flowers,bicycle,high quality,masterpiece
增加Monkey的权重,使用了五个小括号,相当于五个1.1相乘,等于1.61倍权重
(((((monkey))))),flowers,bicycle,high quality,masterpiece,
可以看出图片中Monkey占的比例最大
- 分步绘制
使用以下格式可以分步绘制,可以精准化控制场面
假设总的迭代步数为sum_step
例如:
总共迭代步数:30(迭代步数越高,图像越精确,推荐的迭代步数为20-30。)
- [sunny:rainy:20], 1girl
- [sunny:rainy:5], 1girl
- 相加融合绘制
使用 “AND” 融合不同的主体:
- captain america AND spider-man highres building_ruins upper_body (融合了美国队长和蜘蛛侠)
- 交替融合绘制
使用 “|” 符号进行交替融合绘制:
- a [turtle|horse] SD绘制时先画龟,再画马,再画龟,再画马,交替进行,直到迭代30步
- 提示词污染
提示词之间可能会互相污染,影响生成效果,举例说明:
a cute girl,a green hat,a yellow shirt,
提示词是想要生成一个女孩,带着绿色的帽子,穿着黄色的T恤,但却生成了黄色的帽子
解决办法包括使用注释语法或Cutoff插件控制提示词污染。例如:
a cute girl BREAK a green hat BREAK a yellow shirt,
a cute girl,\(a green hat\),\(a yellow shirt\),
- cutoff插件
推荐使用cutoff插件的形式,比较稳定。
提示词
Stable Diffusion 最强提示词手册
- Stable Diffusion介绍
- OpenArt介绍
- 提示词(Prompt) 工程介绍
- …
第一章、提示词格式
- 提问引导
- 示例
- 单词的顺序
- …
有需要的朋友,可以点击下方卡片免费领取!
第二章、修饰词(Modifiers)
- Photography/摄影
- Art Mediums/艺术媒介
- Artists/艺术家
- Illustration/插图
- Emotions/情感
- Aesthetics/美学
- …
第三章、 Magic words(咒语)
- Highly detailed/高细节
- Professional/专业
- Vivid Colors/鲜艳的颜色
- Bokeh/背景虚化
- Sketch vs Painting/素描 vs 绘画
- …
第四章、Stable Diffusion参数
- Resolution/分辨率
- CFC/提词相关性
- Step count/步数
- Seed/种子
- Sampler/采样
- 反向提示词(Prompt)
第5章 img2img(图生图),in/outpainting(扩展/重绘)
- 将草图转化为专业艺术作品
- 风格转换
- lmg2lmg 变体
- Img2lmg+多个AI问题
- lmg2lmg 低强度变体
- 重绘
- 扩展/裁剪
- …
第6章 重要提示
- 词语的顺序和词语本身一样重要
- 不要忘记常规工具
- 反向提示词(Prompt)
- …
第7章 OpenArt展示
- 提示词 (Prompt)
- 案例展示
- …
篇幅有限,这里就不一一展示了,有需要的朋友可以点击下方的卡片进行领取!