关于"国内人脸识别研究现状"博文点评

最近几年,在国内掀起了一股图像处理、分析、识别的热潮,而其中的车牌识别和人脸识别无疑是其中的研究热潮。

本人没有做过车牌识别的项目,不便叙述,不过,倒是可以跟大家聊聊最近几年国内在人脸识别领域的一些发展情况。

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括图像采集,人脸定位,预处理,人脸特征提取,模式分类、判决识别等等。当然,还包括相应的摄像机,摄像头等光学设备,以及PC,DSP,ARM等计算平台。毋庸置疑的是,在这当中,基于图像的智能分析(包括人脸定位,预处理,特征提取,模式分类,判决识别扥)是最重要的一个环节。而这个部分,属于模式识别、人工智能、机器学习相结合的一个产物。但就知识面来说,需要对概率论,数理统计,模式识别,模式分类,图像处理,线性代数,随机过程,高等数学等等这些课程有一定的熟悉程度。当然了,如果,你是在学校里面搞科研,matlab是肯定要熟练才行。如果,你是在公司里面搞图像算法方面,编程(一般采用c++)肯定是少不了的。当然,如果你不是专门搞图像算法这部分的,大概了解了解就可以了,如果仅仅是想利用业余兴趣来学习,个人感觉,会非常困难。 人脸识别,是20世纪80年代提出的,不过,国内真正开始做这部分,是20世纪90年代。个人认为,国内最早研究人脸识别的,当属于中科院计算所跟哈工大的一个联合面像实验室。该实验室的高文教授,陈熙林教授,山世光教授,直到今天,都一直活跃在人脸识别领域,更可贵的是,在IEEE上面发表了很多paper。这一点,很值得国内的同行学习。后来,该实验室,成为上海银晨的研发中心,专门为上海银晨做技术研发和技术支持。其次是中科院生物识别研究所的李子青教授,以及下属的中科奥森公司。李子青教授,当年在微软亚洲研究院的时候,就从事人脸识别方面的研究工作。后来,在中科院组建了专门的人脸识别研究团队(当然是他跟他带领的一群博士硕士)。该研究团队,首先提出了基于近红外的人脸识别技术,并将该项人脸识别技术用于08年北京奥运会。同时,基于近红外的人脸识别技术,得到了国际上同行业专家的认同和一致肯定。顺便提一下,李子青教授编辑了一本名为《Handbook of face recognition》的书籍,可以说是目前人脸识别领域,最为全面的一本参考书。接着,是清华大学的丁晓青教授。丁晓青教授在OCR(字符识别)领域,可谓国内第一人。不过,最近几年转行做人脸识别,也是非常有成就的。不说别的,就只从FRVT2006(美国国家标准研究所2006年全球人脸识别供应商系统性能测试)的测试结果来看,丁晓青教授的研究团队(自然也是丁教授跟她的博士、硕士)是唯一一个完成大规模3D人脸识别性能测试的参赛团队。由此可见,在国内人脸识别领域来说,她们的算法,在3D领域,绝对排名第一。不过,国内人脸识别产品市场占有率最高的,是汉王科技的门禁和考勤系统。汉王科技也是中科院下属的一个公司,其人脸识别技术,是采用双摄像头,分别捕获到人脸的信息,从而合成3D人脸图片,然后进行特征提取和相应的识别工作。最后一个,就是深圳的飞瑞斯,该公司最近也在推广其自主开发的人脸识别系统。于前几位不同的是,它们采用了多光源进行补光的策略,从而有效解决了人脸识别中环境干扰的问题。当然,除此之外,也有一些小公司或者单位,也在从事人脸识别方面的研究工作。不过,都没有自主的技术或者产品推出。在这里,就不介绍了。 注意:以上均为本人观点,仅供参考。




这里有个关于国内#人脸识别#研究现状的博文(http://blog.csdn.net/carson2005/article/details/5829442),大家可以参考一下。

有几处比较不确切的地方,比如:

1,人脸识别提出是在1964年,而不是80年代;

2,丁晓青老师参加FRVT2006,并不是唯一完成3D人脸识别测试,而是唯一完成“大规模数据库测试的学术机构”,同时也是“唯一一个优于人眼的人脸识别性能的系统”(参考:http://news.sciencenet.cn/htmlnews/200741819286640177649.html);

3,汉王的技术采用双目摄像头,并不是为了合成“3D人脸图片”,而是主要用近红外来进行识别,可见光摄像头进行显示;

国内最早从事人脸识别研究的还包括清华大学电子系的苏光大教授,2000年左右就开始在公安部的资助下进行“人像组合与人像识别综合系统”研究,他的弟子张翠平于2000年写的关于人脸识别的综述“人脸识别技术综述”,是国内人脸识别最早的综述。

此外,清华计算机系的艾海洲老师,虽然在近几年才开始开展人脸识别方面的工作,但是其在人脸检测、跟踪,特征点定位等方面的工作在国际上一致具有很大的影响力,十分值得关注。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值