# 深度学习AI美颜系列---性别识别

Fig.1 性别识别CNN网络结构示意图

Fig.2输入样例图

GenderUtils.py中定义了相关的函数，如下：

# AGE
import matplotlib.image as img
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.framework import ops
import math
import os
import csv

def create_placeholders(n_H0, n_W0, n_C0, n_y):
"""
Creates the placeholders for the tensorflow session.

Arguments:
n_H0 -- scalar, height of an input image
n_W0 -- scalar, width of an input image
n_C0 -- scalar, number of channels of the input
n_y -- scalar, number of classes

Returns:
X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"
Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float"
"""

X = tf.placeholder(name='X', shape=(None, n_H0, n_W0, n_C0), dtype=tf.float32)
Y = tf.placeholder(name='Y', shape=(None, n_y), dtype=tf.float32)
return X, Y

def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
"""
Creates a list of random minibatches from (X, Y)

Arguments:
X -- input data, of shape (input size, number of examples) (m, Hi, Wi, Ci)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) (m, n_y)
mini_batch_size - size of the mini-batches, integer
seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours.

Returns:
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
"""

m = X.shape[0]                  # number of training examples
mini_batches = []
np.random.seed(seed)

# Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X[permutation,:,:,:]
shuffled_Y = Y[permutation,:]

# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
num_complete_minibatches = int(math.floor(m / mini_batch_size)) # number of mini batches of size mini_batch_size in your partitionning
for k in range(0, int(num_complete_minibatches)):
mini_batch_X = shuffled_X[k * mini_batch_size : k * mini_batch_size + mini_batch_size,:,:,:]
mini_batch_Y = shuffled_Y[k * mini_batch_size : k * mini_batch_size + mini_batch_size,:]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)

# Handling the end case (last mini-batch < mini_batch_size)
if m % mini_batch_size != 0:
mini_batch_X = shuffled_X[num_complete_minibatches * mini_batch_size : m,:,:,:]
mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size : m,:]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)

return mini_batches

def row_csv2dict(csv_file):
dict_club={}
with open(csv_file)as f:
dict_club[row[0]]=row[1]
return dict_club

def input_data():

path = "data/train/"
train_num = sum([len(x) for _, _, x in os.walk(os.path.dirname(path))])
image_train = np.zeros((train_num,112,92))
label_train = np.ones((train_num,2))
train_label_dict = row_csv2dict("data/train.csv")
count = 0
for key in train_label_dict:
if int(train_label_dict[key]) == 0:
label_train[count, 0] = 1
label_train[count, 1] = 0
else:
label_train[count, 1] = 1
label_train[count, 0] = 0
filename = path + str(key)
count = count + 1
path = "data/test/"
test_num = sum([len(x) for _, _, x in os.walk(os.path.dirname(path))])
image_test = np.zeros((test_num, 112,92))
label_test = np.ones((test_num,2))
test_label_dict = row_csv2dict("data/test.csv")
count = 0
for key in test_label_dict:
if int(test_label_dict[key]) == 0:
label_test[count, 0] = 1
label_test[count, 1] = 0
else:
label_test[count, 1] = 1
label_test[count, 0] = 0
filename = path + str(key)
count = count + 1
return image_train, label_train,image_test, label_test

def weight_variable(shape,name):
return tf.Variable(tf.truncated_normal(shape, stddev = 0.1),name=name)

def bias_variable(shape,name):
return tf.Variable(tf.constant(0.1, shape = shape),name=name)

return tf.nn.conv2d(x, w, strides = [1,1,1,1], padding = "SAME")
else:
return tf.nn.conv2d(x, w, strides = [1,1,1,1], padding = "VALID")

def max_pool(x, kSize, Strides):
return tf.nn.max_pool(x, ksize = [1,kSize,kSize,1],strides = [1,Strides,Strides,1], padding = "SAME")

def compute_cost(Z3, Y):
"""
Computes the cost

Arguments:
Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
Y -- "true" labels vector placeholder, same shape as Z3

Returns:
cost - Tensor of the cost function
"""
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y))
return cost

def initialize_parameters():
tf.set_random_seed(1)
W1 = tf.cast(weight_variable([5,5,1,32],"W1"), dtype = tf.float32)
b1 = tf.cast(bias_variable([32],"b1"), dtype = tf.float32)
W2 = tf.cast(weight_variable([5,5,32,64],"W2"), dtype = tf.float32)
b2 = tf.cast(bias_variable([64],"b2"), dtype = tf.float32)
W3 = tf.cast(weight_variable([5,5,64,128],"W3"), dtype = tf.float32)
b3 = tf.cast(bias_variable([128],"b3"), dtype = tf.float32)

W4 = tf.cast(weight_variable([14*12*128,500],"W4"), dtype = tf.float32)
b4 = tf.cast(bias_variable([500],"b4"), dtype = tf.float32)
W5 = tf.cast(weight_variable([500,500],"W5"), dtype = tf.float32)
b5 = tf.cast(bias_variable([500],"b5"), dtype = tf.float32)
W6 = tf.cast(weight_variable([500,2],"W6"), dtype = tf.float32)
b6 = tf.cast(bias_variable([2],"b6"), dtype = tf.float32)
parameters = {"W1":W1,
"b1":b1,
"W2":W2,
"b2":b2,
"W3":W3,
"b3":b3,
"W4":W4,
"b4":b4,
"W5":W5,
"b5":b5,
"W6":W6,
"b6":b6}
return parameters

def cnn_net(x, parameters, keep_prob = 1.0):
#frist convolution layer
w_conv1 = parameters["W1"]
b_conv1 = parameters["b1"]
h_conv1 = tf.nn.relu(conv2d(x,w_conv1) + b_conv1)  #output size 112x92x32
h_pool1 = max_pool(h_conv1,2,2)    #output size 56x46x32

#second convolution layer
w_conv2 = parameters["W2"]
b_conv2 = parameters["b2"]
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2) #output size 56x46x64
h_pool2 = max_pool(h_conv2,2,2) #output size 28x23x64

#third convolution layer
w_conv3 = parameters["W3"]
b_conv3 = parameters["b3"]
h_conv3 = tf.nn.relu(conv2d(h_pool2,w_conv3) + b_conv3) #output size 28x23x128
h_pool3 = max_pool(h_conv3,2,2) #output size 14x12x128

#full convolution layer
w_fc1 = parameters["W4"]
b_fc1 = parameters["b4"]
h_fc11 = tf.reshape(h_pool3,[-1,14*12*128])
h_fc1 = tf.nn.relu(tf.matmul(h_fc11,w_fc1) + b_fc1)

w_fc2 = parameters["W5"]
b_fc2 = parameters["b5"]
h_fc2 = tf.nn.relu(tf.matmul(h_fc1,w_fc2)+b_fc2)
h_fc2_drop = tf.nn.dropout(h_fc2,keep_prob)

w_fc3 = parameters["W6"]
b_fc3 = parameters["b6"]
y_conv = tf.matmul(h_fc2_drop, w_fc3) + b_fc3
#y_conv = tf.nn.softmax(tf.matmul(h_fc2_drop, w_fc3) + b_fc3)
#rmse = tf.sqrt(tf.reduce_mean(tf.square(y_ - y_conv)))
#cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y, logits = y_conv))
#correct_prediction  = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y,1))
#accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
return y_conv

def save_model(saver,sess,save_path):
path = saver.save(sess, save_path)
print 'model save in :{0}'.format(path)



GenderTrain.py如下：

# AGE
import matplotlib.image as img
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.framework import ops
import math
import os
import csv
from GenderUtils import input_data,create_placeholders,random_mini_batches,row_csv2dict,weight_variable,bias_variable,conv2d,max_pool,compute_cost,initialize_parameters,cnn_net,save_model
np.random.seed(1)
tf.reset_default_graph()

def model(X_train, Y_train, X_test, Y_test,learning_rate = 0.001, num_epochs = 100, minibatch_size = 64, print_cost = True):
"""
Implements a three-layer ConvNet in Tensorflow:
CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED

Arguments:
X_train -- training set, of shape (None, 112, 92, 1)
Y_train -- test set, of shape (None, n_y = 2)
X_test -- training set, of shape (None, 112, 92, 1)
Y_test -- test set, of shape (None, n_y = 2)
learning_rate -- learning rate of the optimization
num_epochs -- number of epochs of the optimization loop
minibatch_size -- size of a minibatch
print_cost -- True to print the cost every 100 epochs

Returns:
train_accuracy -- real number, accuracy on the train set (X_train)
test_accuracy -- real number, testing accuracy on the test set (X_test)
parameters -- parameters learnt by the model. They can then be used to predict.
"""
#     ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables
tf.set_random_seed(1)                             # to keep results consistent (tensorflow seed)
seed = 3                                          # to keep results consistent (numpy seed)
(m, n_H0, n_W0,n_C0) = X_train.shape
n_y = Y_train.shape[1]
costs = []
SAVE_PATH = "model/mymodel"
print("X_train shape:",str(X_train.shape))
# Create Placeholders of the correct shape
X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)
print("Y shape:", str(Y))
# Initialize parameters
parameters = initialize_parameters()
# cnn
Z3 = cnn_net(X, parameters)
# Cost function
cost = compute_cost(Z3, Y)
# Backpropagation:Define the tensorflow optimizer.
# Inizialize all the variables globally
init = tf.global_variables_initializer()
# training process
saver = tf.train.Saver(max_to_keep=3)
with tf.Session() as sess:
# Run the initialization
sess.run(init)
# Do the training loop
for epoch in range(num_epochs):
minibatch_cost = 0.
num_minibatches = int(m / minibatch_size)
seed = seed + 1
minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
for minibatch in minibatches:
# Select a minibatch
(minibatch_X,minibatch_Y) = minibatch
_,temp_cost = sess.run([optimizer, cost], feed_dict = {X:minibatch_X, Y:minibatch_Y})
minibatch_cost += temp_cost / num_minibatches
if print_cost == True and epoch % 5 == 0:
print("Cost after epoch %i : %f" % (epoch, minibatch_cost))
if print_cost == True and epoch % 1 == 0:
costs.append(minibatch_cost)
# plot the cost
#plt.plot(np.squeeze(costs))
#plt.ylabel("cost")
#plt.xlabel("iterations (per tens)")
#plt.title("Lerning ratge =" + str(learning_rate))
#plt.show()
# Calculate the correct predictions
predict_op = tf.argmax(Z3, 1)
correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))

# Calculate accuracy on the test
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(accuracy)
train_batch_num = int(math.floor(X_train.shape[0] / minibatch_size))
train_accuracy = 0.
for i in range(train_batch_num):
train_accuracy += 1.0 / train_batch_num * accuracy.eval({X: X_train[i * minibatch_size:(i+1)*minibatch_size,:,:,:],Y:Y_train[i * minibatch_size:(i+1)*minibatch_size,:]})
test_batch_num = int(X_test.shape[0] / minibatch_size)
test_accuracy = 0.
for i in range(test_batch_num):
test_accuracy += 1.0 / test_batch_num * accuracy.eval({X: X_test[i * minibatch_size:(i+1)*minibatch_size,:,:,:],Y:Y_test[i * minibatch_size:(i+1)*minibatch_size,:]})
print("Train Accuracy:", train_accuracy)
print("Test Accuracy:", test_accuracy)
save_model(saver,sess,SAVE_PATH)
print("Z3's shape:", str(Z3.shape))
return train_accuracy, test_accuracy, parameters

image_train, label_train, image_test, label_test = input_data()
image_train = image_train.reshape(image_train.shape[0],image_train.shape[1],image_train.shape[2],1)
image_test = image_test.reshape(image_test.shape[0],image_test.shape[1],image_test.shape[2],1)
image_train = image_train / 255.
image_test = image_test / 255.
model(image_train, label_train, image_test, label_test)


测试部分GenderTest.py:

# AGE
import matplotlib.image as img
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.framework import ops
import math
from GenderUtils import create_placeholders,weight_variable,bias_variable,conv2d,max_pool,compute_cost,initialize_parameters,cnn_net
np.random.seed(1)
tf.reset_default_graph()

parameters = initialize_parameters()
saver = tf.train.Saver()
with tf.Session() as sess:
tf.set_random_seed(1)
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(checkpoint_dir = 'model/')
print(ckpt.model_checkpoint_path)
saver.restore(sess,ckpt.model_checkpoint_path)
parameters = {"W1":sess.run(parameters["W1"]),
"b1":sess.run(parameters["b1"]),
"W2":sess.run(parameters["W2"]),
"b2":sess.run(parameters["b2"]),
"W3":sess.run(parameters["W3"]),
"b3":sess.run(parameters["b3"]),
"W4":sess.run(parameters["W4"]),
"b4":sess.run(parameters["b4"]),
"W5":sess.run(parameters["W5"]),
"b5":sess.run(parameters["b5"]),
"W6":sess.run(parameters["W6"]),
"b6":sess.run(parameters["b6"])}
#the image inputs is gray image with three channels.
image_test = image[:,:,0]
print("image_test shape:", str(image_test.shape))
image = image_test.reshape(1,image_test.shape[0],image_test.shape[1],1)
#     image = image.reshape(1,image_test.shape[0],image_test.shape[1],1)
image = image / 255.
imaget = tf.image.convert_image_dtype(image, tf.float32)
print("image shape: %", str(imaget.shape))
res = cnn_net(imaget, parameters)
print("result: ",sess.run(tf.argmax(res, 1)))
print(str(res.shape))
print(res.eval())

Fig.3训练结果图

Github：连接

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120