读的一篇论文中写道:
We adopt pixel-wise mean square error (MSE) to regularize the similarity. The reconstruction loss can be formally defined as
L r e c = E I m ∼ I m ∥ R m − I m ∥ 2 L_{rec} = E_{I_{m} ∼I_{m}} {∥R_{m} − I_{m} ∥_{2}} Lrec=EIm∼Im∥Rm−Im∥2
where ∥ ⋅ ∥ 2 ∥ · ∥_{2} ∥⋅∥2 denotes the L2 norm, and E E E denotes the average operator over all images in the training manga dataset I m I_{m} Im
翻译一下,意思就是他们要使用像素级MSE(即均方差),结果下面公式里却用了L2 norm(L2范数),这俩玩意有什么关系捏?
首先看看L2范数和均方差的定义:
- L2范数是指 向量各元素的平方和然后求平方根
- 均方差是指 所有(预测值-实际值)的平方和,再除以总数
也就是说,设预测值A
中的全部元素组成向量a
,实际值B
中的全部元素组成向量b
,值一共n
个,则可以说:
n
∗
M
S
E
(
A
,
B
)
=
(
∥
a
−
b
∥
2
)
2
n*MSE(A, B) = (∥a-b∥_{2})^{2}
n∗MSE(A,B)=(∥a−b∥2)2
既然可以得到一个如此明确的双向映射,那么MSE和L2 norm就是可相互实现的。我要实现MSE,就可以用已存在的L2 norm库函数做,反之亦然。
因此,在上述引用中,虽然它的计算式并不真的完全等效于像素级MSE,但是效果也差不多。
注:外面的 E I m ∼ I m E_{I_{m} ∼I_{m}} EIm∼Im的意思是对输入的每一张图片的L2范数的值取均,并不是对每个像素取均。