python调用matplotlib包画混淆矩阵图异常处理

在使用matplotlib绘制混淆矩阵时遇到错误,通过检查代码并怀疑是graphviz包更新导致的问题。解决方法是卸载并重新安装anaconda3,确保删除C盘及用户文件夹下的相关文件,重新安装后异常得到解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我在调用matplotlib包画交叉矩阵时,出现如下错误。
在这里插入图片描述
相关代码如下:

# 定义混淆矩阵画图函数
def plot_confusion_matrix(cm,  # 混淆矩阵
                          target_names,  # 标签名
                          title='Confusion matrix',  # 设置矩阵名称
                          cmap='Blues',  # 这个地方设置混淆矩阵的颜色主题,这个主题看着就干净
                          normalize=True):
    accuracy = np.trace(cm) / float(np.sum(cm))  # 计算准确率
    misclass = 1 - accuracy  # 计算错误率

    if cmap is None:
        cmap = plt.get_cmap('Blues')  # 如果没有设置主题颜色,就设置主题颜色为'Blues'

    plt.figure(figsize=(9, 7))  # 设置图的尺寸大小

    plt.imshow(cm
### 绘制混淆矩阵并保存至CSV 为了实现这一目标,首先需要导入必要的库来处理数据、绘制图形以及操作文件。以下是具体的操作方法: 对于创建混淆矩阵而言,`sklearn.metrics.confusion_matrix`函数能够接收实际标签和预测标签作为输入参数,并返回一个表示混淆矩阵的数组[^2]。 ```python from sklearn.metrics import confusion_matrix import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns ``` 接着定义两个列表分别存储真实的类别标签(real_labels) 和模型给出的预测结果(predicted_labels),这两个列表应该具有相同的长度并且一一对应每一个样本的真实情况及其对应的预测结果。 假设已经拥有了上述两个列表,则可以通过如下方式构建混淆矩阵并将其转换为Pandas DataFrame以便后续更方便地进行可视化与导出操作: ```python # 构建混淆矩阵 cm = confusion_matrix(real_labels, predicted_labels) # 将其转化为DataFrame形式 df_cm = pd.DataFrame(cm, index=[i for i in "ABCDE"], columns=[i for i in "ABCDE"]) ``` 这里假定分类任务涉及五个同的类别,因此使用字母A-E代表各个类别的名称;如果实际情况同,请根据自己的需求调整相应的索引名。 完成以上步骤之后就可以利用Seaborn库中的heatmap功能快速生成直观易懂的热力图版本的混淆矩阵了: ```python plt.figure(figsize=(10,7)) sns.heatmap(df_cm, annot=True) plt.title('Confusion Matrix') plt.ylabel('Actual Label') plt.xlabel('Predicted Label') plt.show() ``` 最后一步就是把得到的结果存入CSV文档当中去了。这同样很简单——只需要调用Pandas提供的to_csv方法即可做到这一点: ```python output_file_path = 'confusion_matrix.csv' df_cm.to_csv(output_file_path) print(f"The Confusion Matrix has been saved to {output_file_path}") ``` 通过这种方式仅可以获得一张清晰明了的图表展示各类别之间的关系,同时也得到了一份便于分享交流的数据记录文件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值