可视化学习笔记6-混淆矩阵可视化分类模型预测结果(附代码)

本文介绍了混淆矩阵在评估分类模型预测结果中的作用,详细解释了sklearn.metrics.confusion_matrix函数,并提供了利用matplotlib绘制混淆矩阵的代码示例,包括可用的颜色映射选项。通过混淆矩阵和可视化,可以帮助理解模型的性能。
摘要由CSDN通过智能技术生成

混淆矩阵是机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型预测的类别判断两个标准进行汇总。其中矩阵的行表示真实值,矩阵的列表示预测值。

sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)

  • y_true真实标签值
  • y_pred预测标签值
  • labels=None类别,可以手动设置,也可自动生成。
  • sample_weight 是样本权重

定义/绘制混淆矩阵完整代码

from matplotlib import pyplot as plt
from sklearn.metrics import confusion_matrix
#定义和绘制混淆矩阵
def get_confusion_matrix(trues, preds):
  labels =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值