混淆矩阵是机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型预测的类别判断两个标准进行汇总。其中矩阵的行表示真实值,矩阵的列表示预测值。
sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)
- y_true真实标签值
- y_pred预测标签值
- labels=None类别,可以手动设置,也可自动生成。
- sample_weight 是样本权重
定义/绘制混淆矩阵完整代码
from matplotlib import pyplot as plt
from sklearn.metrics import confusion_matrix
#定义和绘制混淆矩阵
def get_confusion_matrix(trues, preds):
labels =