Graham's Scan法求解凸包问题

概念

凸包(Convex Hull)是一个计算几何(图形学)中的概念。用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有点的。严谨的定义和相关概念参见维基百科:凸包

这个算法是由数学大师葛立恒(Graham)发明的,他曾经是美国数学学会(AMS)主席、AT&T首席科学家以及国际杂技师协会(IJA)主席。

问题

给定平面上的二维点集,求解其凸包。

过程

1. 在所有点中选取y坐标最小的一点H,当作基点。如果存在多个点的y坐标都为最小值,则选取x坐标最小的一点。坐标相同的点应排除。然后按照其它各点p和基点构成的向量 与x轴的夹角进行排序,夹角由大至小进行顺时针扫描,反之则进行逆时针扫描。实现中无需求得夹角,只需根据向量的内积公式求出向量的模即可。以下图为例,基点为H,根据夹角由小至大排序后依次为H,K,C,D,L,F,G,E,I,B,A,J。下面进行逆时针扫描。

Figure1

2. 线段 一定在凸包上,接着加入C。假设线段 也在凸包上,因为就H,K,C三点而言,它们的凸包就是由此三点所组成。但是接下来加入D时会发现,线段 才会在凸包上,所以将线段 排除,C点不可能是凸包。

3. 即当加入一点时,必须考虑到前面的线段是否会出现在凸包上。从基点开始,凸包上每条相临的线段的旋转方向应该一致,并与扫描的方向相反。如果发现新加的点使得新线段与上线段的旋转方向发生变化,则可判定上一点必然不在凸包上。实现时可用向量叉积进行判断,设新加入的点为pn + 1,上一点为pn,再上一点为pn - 1。顺时针扫描时,如果向量

n - 1, pn>与

n, pn + 1>的叉积为正(逆时针扫描判断是否为负),则将上一点删除。删除过程需要回溯,将之前所有叉积符号相反的点都删除,然后将新点加入凸包。

Figure1

在上图中,加入K点时,由于线段 相对于 为顺时针旋转,所以C点不在凸包上,应该删除,保留K点。接着加入D点,由于线段 相对 为逆时针旋转,故D点保留。按照上述步骤进行扫描,直到点集中所有的点都遍例完成,即得到凸包。

复杂度

这个算法可以直接在原数据上进行运算,因此空间复杂度为O(1)。但如果将凸包的结果存储到另一数组中,则可能在代码级别进行优化。由于在扫描凸包前要进行排序,因此时间复杂度至少为快速排序的O(nlgn)。后面的扫描过程复杂度为O(n),因此整个算法的复杂度为O(nlgn)。

C++/STL实现

 

#include <algorithm>
#include <iostream>
#include <vector>
#include <math.h>
 
using namespace std;
//二维点(或向量)结构体定义
#ifndef _WINDEF_
struct POINT { int x; int y; };
10  #endif
11   
12  typedef vector<POINT> PTARRAY;
13  //判断两个点(或向量)是否相等
14  bool operator==(const POINT &pt1, const POINT &pt2) {
15      return (pt1.x == pt2.x && pt1.y == pt2.y);
16  }
17  // 比较向量中哪个与x轴向量(1, 0)的夹角更大
18  bool CompareVector(const POINT &pt1, const POINT &pt2) {
19      //求向量的模
20      float m1 = sqrt((float)(pt1.x * pt1.x + pt1.y * pt1.y));
21      float m2 = sqrt((float)(pt2.x * pt2.x + pt2.y * pt2.y));
22      //两个向量分别与(1, 0)求内积
23      float v1 = pt1.x / m1, v2 = pt2.x / m2;
24      //如果向量夹角相等,则返回离基点较近的一个,保证有序
25      return (v1 > v2 || v1 == v2 && m1 < m2);
26  }
27  //计算凸包
28  void CalcConvexHull(PTARRAY &vecSrc) {
29      //点集中至少应有3个点,才能构成多边形
30      if (vecSrc.size() < 3) {
31          return;
32      }
33      //查找基点
34      POINT ptBase = vecSrc.front(); //将第1个点预设为最小点
35      for (PTARRAY::iterator i = vecSrc.begin() + 1; i != vecSrc.end(); ++i) {
36          //如果当前点的y值小于最小点,或y值相等,x值较小
37          if (i->y < ptBase.y || (i->y == ptBase.y && i->x > ptBase.x)) {
38              //将当前点作为最小点
39              ptBase = *i;
40          }
41      }
42      //计算出各点与基点构成的向量
43      for (PTARRAY::iterator i = vecSrc.begin(); i != vecSrc.end();) {
44          //排除与基点相同的点,避免后面的排序计算中出现除0错误
45          if (*i == ptBase) {
46              i = vecSrc.erase(i);
47          }
48          else {
49              //方向由基点到目标点
50              i->x -= ptBase.x, i->y -= ptBase.y;
51              ++i;
52          }
53      }
54      //按各向量与横坐标之间的夹角排序
55      sort(vecSrc.begin(), vecSrc.end(), &CompareVector);
56      //删除相同的向量
57      vecSrc.erase(unique(vecSrc.begin(), vecSrc.end()), vecSrc.end());
58      //计算得到首尾依次相联的向量
59      for (PTARRAY::reverse_iterator ri = vecSrc.rbegin();
60          ri != vecSrc.rend() - 1; ++ri) {
61          PTARRAY::reverse_iterator riNext = ri + 1;
62          //向量三角形计算公式
63          ri->x -= riNext->x, ri->y -= riNext->y;
64      }
65      //依次删除不在凸包上的向量
66      for (PTARRAY::iterator i = vecSrc.begin() + 1; i != vecSrc.end(); ++i) {
67          //回溯删除旋转方向相反的向量,使用外积判断旋转方向
68          for (PTARRAY::iterator iLast = i - 1; iLast != vecSrc.begin();) {
69              int v1 = i->x * iLast->y, v2 = i->y * iLast->x;
70              //如果叉积小于0,则无没有逆向旋转
71              //如果叉积等于0,还需判断方向是否相逆
72              if (v1 < v2 || (v1 == v2 && i->x * iLast->x > 0 &&
73                  i->y * iLast->y > 0)) {
74                      break;
75              }
76              //删除前一个向量后,需更新当前向量,与前面的向量首尾相连
77              //向量三角形计算公式
78              i->x += iLast->x, i->y += iLast->y;
79              iLast = (i = vecSrc.erase(iLast)) - 1;
80          }
81      }
82      //将所有首尾相连的向量依次累加,换算成坐标
83      vecSrc.front().x += ptBase.x, vecSrc.front().y += ptBase.y;
84      for (PTARRAY::iterator i = vecSrc.begin() + 1; i != vecSrc.end(); ++i) {
85          i->x += (i - 1)->x, i->y += (i - 1)->y;
86      }
87      //添加基点,全部的凸包计算完成
88      vecSrc.push_back(ptBase);
89  }
90   
91  int main(void) {
92      int nPtCnt = 100; //生成的随机点数
93      PTARRAY vecSrc, vecCH;
94      for (int i = 0; i < nPtCnt; ++i) {
95          POINT ptIn = { rand() % 20, rand() % 20 };
96          vecSrc.push_back(ptIn);
97          cout << ptIn.x << ", " << ptIn.y << endl;
98      }
99      CalcConvexHull(vecSrc);
100      cout << "/nConvex Hull:/n";
101      for (PTARRAY::iterator i = vecSrc.begin(); i != vecSrc.end(); ++i) {
102          cout << i->x << ", " << i->y << endl;
103      }
104      return 0;
105  }
106   
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是 Graham-Scan 算法的 C++ 实现,用于求解凸包问题: ```cpp #include <bits/stdc++.h> using namespace std; struct Point { int x, y; }; // 按照 x 坐标从小到大排序,若 x 坐标相等,则按照 y 坐标从小到大排序。 bool cmp(Point a, Point b) { if (a.x == b.x) return a.y < b.y; return a.x < b.x; } // 计算叉积。 int cross(Point a, Point b, Point c) { return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x); } // Graham-Scan 算法求解凸包。 vector<Point> grahamScan(vector<Point> &points) { int n = points.size(); if (n <= 1) return points; sort(points.begin(), points.end(), cmp); vector<Point> hull(2 * n); int k = 0; // 构建下凸壳。 for (int i = 0; i < n; ++i) { while (k >= 2 && cross(hull[k - 2], hull[k - 1], points[i]) <= 0) k--; hull[k++] = points[i]; } // 构建上凸壳。 for (int i = n - 2, t = k + 1; i >= 0; --i) { while (k >= t && cross(hull[k - 2], hull[k - 1], points[i]) <= 0) k--; hull[k++] = points[i]; } // 去除重复点。 hull.resize(k - 1); return hull; } int main() { // 测试数据。 vector<Point> points = {{0, 3}, {1, 1}, {2, 2}, {4, 4}, {0, 0}, {1, 2}, {3, 1}, {3, 3}}; vector<Point> hull = grahamScan(points); // 输出凸包的顶点。 for (int i = 0; i < hull.size(); ++i) { cout << "(" << hull[i].x << ", " << hull[i].y << ")" << endl; } return 0; } ``` 注意点: 1. 为了方便起见,我直接使用了 C++11 的新特性,使用 vector 存储点集,如果你使用的是较老的编译器,可以使用数组代替 vector。 2. 实现中为了方便起见,我使用了三个点 $A(a_x,a_y)$、$B(b_x,b_y)$、$C(c_x,c_y)$ 的叉积 $cross(A,B,C)$ 表示向量 $\vec{AB}$ 和 $\vec{AC}$ 的叉积。当叉积 $cross(A,B,C)>0$ 时,表示 $\vec{AB}$ 在 $\vec{AC}$ 的逆时针方向;当叉积 $cross(A,B,C)<0$ 时,表示 $\vec{AB}$ 在 $\vec{AC}$ 的顺时针方向;当叉积 $cross(A,B,C)=0$ 时,表示 $\vec{AB}$ 和 $\vec{AC}$ 共线。 3. 为了避免精度误差,最好使用整数类型存储坐标,如 int 类型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值