概念
凸包(Convex Hull)是一个计算几何(图形学)中的概念。用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有点的。严谨的定义和相关概念参见维基百科:凸包。
这个算法是由数学大师葛立恒(Graham)发明的,他曾经是美国数学学会(AMS)主席、AT&T首席科学家以及国际杂技师协会(IJA)主席。
问题
给定平面上的二维点集,求解其凸包。
过程
1. 在所有点中选取y坐标最小的一点H,当作基点。如果存在多个点的y坐标都为最小值,则选取x坐标最小的一点。坐标相同的点应排除。然后按照其它各点p和基点构成的向量 与x轴的夹角进行排序,夹角由大至小进行顺时针扫描,反之则进行逆时针扫描。实现中无需求得夹角,只需根据向量的内积公式求出向量的模即可。以下图为例,基点为H,根据夹角由小至大排序后依次为H,K,C,D,L,F,G,E,I,B,A,J。下面进行逆时针扫描。
2. 线段 一定在凸包上,接着加入C。假设线段 也在凸包上,因为就H,K,C三点而言,它们的凸包就是由此三点所组成。但是接下来加入D时会发现,线段 才会在凸包上,所以将线段 排除,C点不可能是凸包。
3. 即当加入一点时,必须考虑到前面的线段是否会出现在凸包上。从基点开始,凸包上每条相临的线段的旋转方向应该一致,并与扫描的方向相反。如果发现新加的点使得新线段与上线段的旋转方向发生变化,则可判定上一点必然不在凸包上。实现时可用向量叉积进行判断,设新加入的点为pn + 1,上一点为pn,再上一点为pn - 1。顺时针扫描时,如果向量
n - 1, pn>与
n, pn + 1>的叉积为正(逆时针扫描判断是否为负),则将上一点删除。删除过程需要回溯,将之前所有叉积符号相反的点都删除,然后将新点加入凸包。
在上图中,加入K点时,由于线段 相对于 为顺时针旋转,所以C点不在凸包上,应该删除,保留K点。接着加入D点,由于线段 相对 为逆时针旋转,故D点保留。按照上述步骤进行扫描,直到点集中所有的点都遍例完成,即得到凸包。
复杂度
这个算法可以直接在原数据上进行运算,因此空间复杂度为O(1)。但如果将凸包的结果存储到另一数组中,则可能在代码级别进行优化。由于在扫描凸包前要进行排序,因此时间复杂度至少为快速排序的O(nlgn)。后面的扫描过程复杂度为O(n),因此整个算法的复杂度为O(nlgn)。
C++/STL实现
1 | #include <algorithm> |
2 | #include <iostream> |
3 | #include <vector> |
4 | #include <math.h> |
5 | |
6 | using namespace std; |
7 | //二维点(或向量)结构体定义 |
8 | #ifndef _WINDEF_ |
9 | struct POINT { int x; int y; }; |
10 | #endif |
11 | |
12 | typedef vector<POINT> PTARRAY; |
13 | //判断两个点(或向量)是否相等 |
14 | bool operator==(const POINT &pt1, const POINT &pt2) { |
15 | return (pt1.x == pt2.x && pt1.y == pt2.y); |
16 | } |
17 | // 比较向量中哪个与x轴向量(1, 0)的夹角更大 |
18 | bool CompareVector(const POINT &pt1, const POINT &pt2) { |
19 | //求向量的模 |
20 | float m1 = sqrt((float)(pt1.x * pt1.x + pt1.y * pt1.y)); |
21 | float m2 = sqrt((float)(pt2.x * pt2.x + pt2.y * pt2.y)); |
22 | //两个向量分别与(1, 0)求内积 |
23 | float v1 = pt1.x / m1, v2 = pt2.x / m2; |
24 | //如果向量夹角相等,则返回离基点较近的一个,保证有序 |
25 | return (v1 > v2 || v1 == v2 && m1 < m2); |
26 | } |
27 | //计算凸包 |
28 | void CalcConvexHull(PTARRAY &vecSrc) { |
29 | //点集中至少应有3个点,才能构成多边形 |
30 | if (vecSrc.size() < 3) { |
31 | return; |
32 | } |
33 | //查找基点 |
34 | POINT ptBase = vecSrc.front(); //将第1个点预设为最小点 |
35 | for (PTARRAY::iterator i = vecSrc.begin() + 1; i != vecSrc.end(); ++i) { |
36 | //如果当前点的y值小于最小点,或y值相等,x值较小 |
37 | if (i->y < ptBase.y || (i->y == ptBase.y && i->x > ptBase.x)) { |
38 | //将当前点作为最小点 |
39 | ptBase = *i; |
40 | } |
41 | } |
42 | //计算出各点与基点构成的向量 |
43 | for (PTARRAY::iterator i = vecSrc.begin(); i != vecSrc.end();) { |
44 | //排除与基点相同的点,避免后面的排序计算中出现除0错误 |
45 | if (*i == ptBase) { |
46 | i = vecSrc.erase(i); |
47 | } |
48 | else { |
49 | //方向由基点到目标点 |
50 | i->x -= ptBase.x, i->y -= ptBase.y; |
51 | ++i; |
52 | } |
53 | } |
54 | //按各向量与横坐标之间的夹角排序 |
55 | sort(vecSrc.begin(), vecSrc.end(), &CompareVector); |
56 | //删除相同的向量 |
57 | vecSrc.erase(unique(vecSrc.begin(), vecSrc.end()), vecSrc.end()); |
58 | //计算得到首尾依次相联的向量 |
59 | for (PTARRAY::reverse_iterator ri = vecSrc.rbegin(); |
60 | ri != vecSrc.rend() - 1; ++ri) { |
61 | PTARRAY::reverse_iterator riNext = ri + 1; |
62 | //向量三角形计算公式 |
63 | ri->x -= riNext->x, ri->y -= riNext->y; |
64 | } |
65 | //依次删除不在凸包上的向量 |
66 | for (PTARRAY::iterator i = vecSrc.begin() + 1; i != vecSrc.end(); ++i) { |
67 | //回溯删除旋转方向相反的向量,使用外积判断旋转方向 |
68 | for (PTARRAY::iterator iLast = i - 1; iLast != vecSrc.begin();) { |
69 | int v1 = i->x * iLast->y, v2 = i->y * iLast->x; |
70 | //如果叉积小于0,则无没有逆向旋转 |
71 | //如果叉积等于0,还需判断方向是否相逆 |
72 | if (v1 < v2 || (v1 == v2 && i->x * iLast->x > 0 && |
73 | i->y * iLast->y > 0)) { |
74 | break; |
75 | } |
76 | //删除前一个向量后,需更新当前向量,与前面的向量首尾相连 |
77 | //向量三角形计算公式 |
78 | i->x += iLast->x, i->y += iLast->y; |
79 | iLast = (i = vecSrc.erase(iLast)) - 1; |
80 | } |
81 | } |
82 | //将所有首尾相连的向量依次累加,换算成坐标 |
83 | vecSrc.front().x += ptBase.x, vecSrc.front().y += ptBase.y; |
84 | for (PTARRAY::iterator i = vecSrc.begin() + 1; i != vecSrc.end(); ++i) { |
85 | i->x += (i - 1)->x, i->y += (i - 1)->y; |
86 | } |
87 | //添加基点,全部的凸包计算完成 |
88 | vecSrc.push_back(ptBase); |
89 | } |
90 | |
91 | int main(void) { |
92 | int nPtCnt = 100; //生成的随机点数 |
93 | PTARRAY vecSrc, vecCH; |
94 | for (int i = 0; i < nPtCnt; ++i) { |
95 | POINT ptIn = { rand() % 20, rand() % 20 }; |
96 | vecSrc.push_back(ptIn); |
97 | cout << ptIn.x << ", " << ptIn.y << endl; |
98 | } |
99 | CalcConvexHull(vecSrc); |
100 | cout << "/nConvex Hull:/n"; |
101 | for (PTARRAY::iterator i = vecSrc.begin(); i != vecSrc.end(); ++i) { |
102 | cout << i->x << ", " << i->y << endl; |
103 | } |
104 | return 0; |
105 | } |
106 |